scholarly journals Increased Expression of Plasma miRNA-320a and let-7b-5p in Heroin-Dependent Patients and Its Clinical Significance

2021 ◽  
Vol 12 ◽  
Author(s):  
Haixiong Liu ◽  
Wenjin Xu ◽  
Jiying Feng ◽  
Hong Ma ◽  
Jianbin Zhang ◽  
...  

Heroin use disorder is a chronic and relapsing disease that induces persistent changes in the brain. The diagnoses of heroin use disorders are mainly based on subjective reports and no valid biomarkers available. Recent researches have revealed that circulating miRNAs are useful non-invasive biomarkers for diagnosing brain diseases such as Alzheimer's disease, multiple sclerosis, schizophrenia, and bipolar disorder. However, studies on circulating miRNAs for the diagnosis of heroin use disorders are rarely reported. In this study, we investigated the differential expression of plasma miRNAs in 57 heroin-dependent patients. Based on literature research and microarray analysis, two candidate miRNAs, miR-320a and let-7b-5p, were selected and analyzed by quantitative real-time RT-PCR. The results showed miR-320a and let-7b were significantly upregulated in plasma of the heroin-dependent patients compared to that in healthy controls. The area under curves (AUCs) of receiver operating characteristic (ROC) curves of miR-320a and let-7b-5p were 0.748 and 0.758, respectively. The sensitivities of miR-320a and let-7b-5p were 71.9 and 70.2%, while the specificities of miR-320a and let-7b-5p were 76.1 and 78.3%, respectively. The combination of these two miRNAs predicted heron dependence with an AUC of 0.782 (95% CI 0.687–0.876), with 73.7% sensitivity and 82.6% specificity. Our findings suggest a potential use for circulating miRNAs as biomarkers for the diagnosis of heroin abuse.

2015 ◽  
Vol 370 (1668) ◽  
pp. 20140170 ◽  
Author(s):  
Riitta Hari ◽  
Lauri Parkkonen

We discuss the importance of timing in brain function: how temporal dynamics of the world has left its traces in the brain during evolution and how we can monitor the dynamics of the human brain with non-invasive measurements. Accurate timing is important for the interplay of neurons, neuronal circuitries, brain areas and human individuals. In the human brain, multiple temporal integration windows are hierarchically organized, with temporal scales ranging from microseconds to tens and hundreds of milliseconds for perceptual, motor and cognitive functions, and up to minutes, hours and even months for hormonal and mood changes. Accurate timing is impaired in several brain diseases. From the current repertoire of non-invasive brain imaging methods, only magnetoencephalography (MEG) and scalp electroencephalography (EEG) provide millisecond time-resolution; our focus in this paper is on MEG. Since the introduction of high-density whole-scalp MEG/EEG coverage in the 1990s, the instrumentation has not changed drastically; yet, novel data analyses are advancing the field rapidly by shifting the focus from the mere pinpointing of activity hotspots to seeking stimulus- or task-specific information and to characterizing functional networks. During the next decades, we can expect increased spatial resolution and accuracy of the time-resolved brain imaging and better understanding of brain function, especially its temporal constraints, with the development of novel instrumentation and finer-grained, physiologically inspired generative models of local and network activity. Merging both spatial and temporal information with increasing accuracy and carrying out recordings in naturalistic conditions, including social interaction, will bring much new information about human brain function.


2021 ◽  
pp. 1-18
Author(s):  
Xin Zhou ◽  
Cheng Liu ◽  
Yin Yin ◽  
Cheng Zhang ◽  
Xuan Zou ◽  
...  

BACKGROUND: Circulating miRNAs are promising biomarkers for detection of various cancers. As a “developmental” disorder, cancer showed great similarities with embryos. OBJECTIVE: A comprehensive analysis of circulating miRNAs in umbilical cord blood (UCB) and pan-cancers was conducted to identify circulating miRNAs with potential for cancer detection. METHODS: A total of 3831 cancer samples (2050 serum samples from 15 types of cancers and 1781 plasma samples from 13 types of cancers) and 248 UCB samples (120 serum and 128 plasma samples) with corresponding NCs from Chinese populations were analyzed via consistent experiment workflow with Exiqon panel followed by multiple-stage validation with qRT-PCR. RESULTS: Thirty-four serum and 32 plasma miRNAs were dysregulated in at least one type of cancer. Eighteen serum and 16 plasma miRNAs were related with embryos. Among them, 9 serum and 8 plasma miRNAs with consistent expression patterns between pan-cancers and UCB were identified as circulating oncofetal miRNAs. Retrospective analysis confirmed the diagnostic ability of circulating oncofetal miRNAs for specific cancers. And the oncofetal miRNAs were mainly up-regulated in tissues of pan-cancers. CONCLUSIONS: Our study might serve as bases for the potential application of the non-invasive biomarkers in the future clinical.


Author(s):  
Catriona Wimberley ◽  
Sonia Lavisse ◽  
Ansel Hillmer ◽  
Rainer Hinz ◽  
Federico Turkheimer ◽  
...  

Abstract Purpose Translocator protein 18-kDa (TSPO) imaging with positron emission tomography (PET) is widely used in research studies of brain diseases that have a neuro-immune component. Quantification of TSPO PET images, however, is associated with several challenges, such as the lack of a reference region, a genetic polymorphism affecting the affinity of the ligand for TSPO, and a strong TSPO signal in the endothelium of the brain vessels. These challenges have created an ongoing debate in the field about which type of quantification is most useful and whether there is an appropriate simplified model. Methods This review focuses on the quantification of TSPO radioligands in the human brain. The various methods of quantification are summarized, including the gold standard of compartmental modeling with metabolite-corrected input function as well as various alternative models and non-invasive approaches. Their advantages and drawbacks are critically assessed. Results and conclusions Researchers employing quantification methods for TSPO should understand the advantages and limitations associated with each method. Suggestions are given to help researchers choose between these viable alternative methods.


2021 ◽  
Vol 15 ◽  
Author(s):  
Anmin Gong ◽  
Feng Gu ◽  
Wenya Nan ◽  
Yi Qu ◽  
Changhao Jiang ◽  
...  

Neurofeedback training (NFT) is a non-invasive, safe, and effective method of regulating the nerve state of the brain. Presently, NFT is widely used to prevent and rehabilitate brain diseases and improve an individual’s external performance. Among the various NFT methods, NFT to improve sport performance (SP-NFT) has become an important research and application focus worldwide. Several studies have shown that the method is effective in improving brain function and motor control performance. However, appropriate reviews and prospective directions for this technology are lacking. This paper proposes an SP-NFT classification method based on user experience, classifies and discusses various SP-NFT research schemes reported in the existing literature, and reviews the technical principles, application scenarios, and usage characteristics of different SP-NFT schemes. Several key issues in SP-NFT development, including the factors involved in neural mechanisms, scheme selection, learning basis, and experimental implementation, are discussed. Finally, directions for the future development of SP-NFT, including SP-NFT based on other electroencephalograph characteristics, SP-NFT integrated with other technologies, and SP-NFT commercialization, are suggested. These discussions are expected to provide some valuable ideas to researchers in related fields.


Author(s):  
Claire E. Sexton ◽  
Verena Heise ◽  
Klaus P. Ebmeier

Neuroimaging provides a way of examining the structure and function of the brain in life. This chapter gives an up-to-date summary of the methods employed in research and clinic, what is involved for the patient in taking part in imaging, and the clinical applications, both current and about to enter general old age psychiatry practice. Magnetic resonance imaging and imaging with ionising radiation, such as CT, SPECT and PET, are covered. In addition we give a short summary of the applications and potential of electro- and magneto-physiological techniques. We summarise the current and potential use of neuroimaging methods in diagnosis, prognosis, understanding illness mechanisms and the brain mechanisms that confer resilience against the brain diseases of old age.


Author(s):  
Selma Büyükgöze

Brain Computer Interface consists of hardware and software that convert brain signals into action. It changes the nerves, muscles, and movements they produce with electro-physiological signs. The BCI cannot read the brain and decipher the thought in general. The BCI can only identify and classify specific patterns of activity in ongoing brain signals associated with specific tasks or events. EEG is the most commonly used non-invasive BCI method as it can be obtained easily compared to other methods. In this study; It will be given how EEG signals are obtained from the scalp, with which waves these frequencies are named and in which brain states these waves occur. 10-20 electrode placement plan for EEG to be placed on the scalp will be shown.


2016 ◽  
Vol 1 (1) ◽  
pp. 4
Author(s):  
Marymol Koshy ◽  
Bushra Johari ◽  
Mohd Farhan Hamdan ◽  
Mohammad Hanafiah

Hypertrophic cardiomyopathy (HCM) is a global disease affecting people of various ethnic origins and both genders. HCM is a genetic disorder with a wide range of symptoms, including the catastrophic presentation of sudden cardiac death. Proper diagnosis and treatment of this disorder can relieve symptoms and prolong life. Non-invasive imaging is essential in diagnosing HCM. We present a review to deliberate the potential use of cardiac magnetic resonance (CMR) imaging in HCM assessment and also identify the risk factors entailed with risk stratification of HCM based on Magnetic Resonance Imaging (MRI).


2021 ◽  
pp. 1-12
Author(s):  
Xingchen Fan ◽  
Minmin Cao ◽  
Cheng Liu ◽  
Cheng Zhang ◽  
Chunyu Li ◽  
...  

BACKGROUND: MicroRNAs (miRNAs), with noticeable stability and unique expression pattern in plasma of patients with various diseases, are powerful non-invasive biomarkers for cancer detection including endometrial cancer (EC). OBJECTIVE: The objective of this study was to identify promising miRNA biomarkers in plasma to assist the clinical screening of EC. METHODS: A total of 93 EC and 79 normal control (NC) plasma samples were analyzed using Quantitative Real-time Polymerase Chain Reaction (qRT-PCR) in this four-stage experiment. The receiver operating characteristic curve (ROC) analysis was conducted to evaluate the diagnostic value. Additionally, the expression features of the identified miRNAs were further explored in tissues and plasma exosomes samples. RESULTS: The expression of miR-142-3p, miR-146a-5p, and miR-151a-5p was significantly overexpressed in the plasma of EC patients compared with NCs. Areas under the ROC curve of the 3-miRNA signature were 0.729, 0.751, and 0.789 for the training, testing, and external validation phases, respectively. The diagnostic performance of the identified signature proved to be stable in the three public datasets and superior to the other miRNA biomarkers in EC diagnosis. Moreover, the expression of miR-151a-5p was significantly elevated in EC plasma exosomes. CONCLUSIONS: A signature consisting of 3 plasma miRNAs was identified and showed potential for the non-invasive diagnosis of EC.


Sign in / Sign up

Export Citation Format

Share Document