scholarly journals Antibiotic Resistance in Syria: A Local Problem Turns Into a Global Threat

2018 ◽  
Vol 6 ◽  
Author(s):  
Mihajlo Jakovljevic ◽  
Sanaa Al ahdab ◽  
Milena Jurisevic ◽  
Sulaiman Mouselli
2019 ◽  
Vol 20 (7) ◽  
pp. 756-762 ◽  
Author(s):  
Aditi Kaushik ◽  
Manish Kaushik ◽  
Viney Lather ◽  
J.S. Dua

An emerging crisis of antibiotic resistance for microbial pathogens is alarming all the nations, posing a global threat to human health. The production of the metallo-β-lactamase enzyme is the most powerful strategy of bacteria to produce resistance. An efficient way to combat this global health threat is the development of broad/non-specific type of metallo-β-lactamase inhibitors, which can inhibit the different isoforms of the enzyme. Till date, there are no clinically active drugs against metallo- β-lactamase. The lack of efficient drug molecules against MBLs carrying bacteria requires continuous research efforts to overcome the problem of multidrug-resistance bacteria. The present review will discuss the clinically potent molecules against different variants of B1 metallo-β-lactamase.


Pathogens ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 874
Author(s):  
Periyasamy Sivalingam ◽  
John Poté ◽  
Kandasamy Prabakar

Over the past decades, the rising antibiotic resistance bacteria (ARB) are continuing to emerge as a global threat due to potential public health risk. Rapidly evolving antibiotic resistance and its persistence in the environment, have underpinned the need for more studies to identify the possible sources and limit the spread. In this context, not commonly studied and a neglected genetic material called extracellular DNA (eDNA) is gaining increased attention as it can be one of the significant drivers for transmission of extracellular ARGS (eARGs) via horizontal gene transfer (HGT) to competent environmental bacteria and diverse sources of antibiotic-resistance genes (ARGs) in the environment. Consequently, this review highlights the studies that address the environmental occurrence of eDNA and encoding eARGs and its impact on the environmental resistome. In this review, we also brief the recent dedicated technological advancements that are accelerating extraction of eDNA and the efficiency of treatment technologies in reducing eDNA that focuses on environmental antibiotic resistance and potential ecological health risk.


2021 ◽  
Vol 15 (1) ◽  
Author(s):  
Elsa Kobeissi ◽  
Marilyne Menassa ◽  
Krystel Moussally ◽  
Ernestina Repetto ◽  
Ismail Soboh ◽  
...  

Abstract Background Antibiotic resistance (ABR) is a major global threat. Armed and protracted conflicts act as multipliers of infection and ABR, thus leading to increased healthcare and societal costs. We aimed to understand and describe the socioeconomic burden of ABR in conflict-affected settings and refugee hosting countries by conducting a systematic scoping review. Methods A systematic search of PubMed, Medline (Ovid), Embase, Web of Science, SCOPUS and Open Grey databases was conducted to identify all relevant human studies published between January 1990 and August 2019. An updated search was also conducted in April 2020 using Medline/Ovid. Independent screenings of titles/abstracts followed by full texts were performed using pre-defined criteria. The Newcastle-Ottawa Scale was used to assess study quality. Data extraction and analysis were based on the PICOS framework and following the PRISMA-ScR guideline. Results The search yielded 8 studies (7 publications), most of which were single-country, mono-center and retrospective studies. The studies were conducted in Lebanon (n = 3), Iraq (n = 2), Jordan (n = 1), Palestine (n = 1) and Yemen (n = 1). Most of the studies did not have a primary aim to assess the socioeconomic impact of ABR and were small studies with limited statistical power that could not demonstrate significant associations. The included studies lacked sufficient information for the accurate evaluation of the cost incurred by antibiotic resistant infections in conflict-affected countries. Conclusion This review highlights the scarcity of research on the socioeconomic burden of ABR on general populations in conflict-affected settings and on refugees and migrants in host countries, and lists recommendations for consideration in future studies. Further studies are needed to understand the cost of ABR in these settings to develop and implement adaptable policies.


Microbiome ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Yu Li ◽  
Zeling Xu ◽  
Wenkai Han ◽  
Huiluo Cao ◽  
Ramzan Umarov ◽  
...  

Abstract Background The spread of antibiotic resistance has become one of the most urgent threats to global health, which is estimated to cause 700,000 deaths each year globally. Its surrogates, antibiotic resistance genes (ARGs), are highly transmittable between food, water, animal, and human to mitigate the efficacy of antibiotics. Accurately identifying ARGs is thus an indispensable step to understanding the ecology, and transmission of ARGs between environmental and human-associated reservoirs. Unfortunately, the previous computational methods for identifying ARGs are mostly based on sequence alignment, which cannot identify novel ARGs, and their applications are limited by currently incomplete knowledge about ARGs. Results Here, we propose an end-to-end Hierarchical Multi-task Deep learning framework for ARG annotation (HMD-ARG). Taking raw sequence encoding as input, HMD-ARG can identify, without querying against existing sequence databases, multiple ARG properties simultaneously, including if the input protein sequence is an ARG, and if so, what antibiotic family it is resistant to, what resistant mechanism the ARG takes, and if the ARG is an intrinsic one or acquired one. In addition, if the predicted antibiotic family is beta-lactamase, HMD-ARG further predicts the subclass of beta-lactamase that the ARG is resistant to. Comprehensive experiments, including cross-fold validation, third-party dataset validation in human gut microbiota, wet-experimental functional validation, and structural investigation of predicted conserved sites, demonstrate not only the superior performance of our method over the state-of-art methods, but also the effectiveness and robustness of the proposed method. Conclusions We propose a hierarchical multi-task method, HMD-ARG, which is based on deep learning and can provide detailed annotations of ARGs from three important aspects: resistant antibiotic class, resistant mechanism, and gene mobility. We believe that HMD-ARG can serve as a powerful tool to identify antibiotic resistance genes and, therefore mitigate their global threat. Our method and the constructed database are available at http://www.cbrc.kaust.edu.sa/HMDARG/.


2015 ◽  
Vol 43 (S3) ◽  
pp. 6-11 ◽  
Author(s):  
Steven J. Hoffman ◽  
Kevin Outterson

2015 ◽  
Vol 43 (2) ◽  
pp. 363-368 ◽  
Author(s):  
Steven J. Hoffman ◽  
Kevin Outterson

Of the many global health challenges facing the world today, only a small number require global collective action. Most health challenges can be fully addressed through action at local, regional or national levels.What kind of actions must be taken to address the global threat of antibiotic resistance (ABR)? What legal, political and economic tools might be needed to achieve this level of action?In March 2015 the Dag Hammarskjöld Foundation convened a workshop in Uppsala, Sweden to address these questions in partnership with the Global Strategy Lab, the Journal of Law, Medicine & Ethics (JLME), the Norwegian Institute of Public Health, and ReAct — Action on Antibiotic Resistance. Eleven concise articles were commissioned to explore whether ABR depended on global collective action, and if so, what tools could help states and non-state actors to achieve it.


2020 ◽  
Author(s):  
Brody Barton ◽  
Addison Grinnell ◽  
Randy M. Morgenstein

AbstractAntibiotic resistant bacteria are a global threat to human health. One way to combat the rise of antibiotic resistance is to make new antibiotics that target previously ignored proteins. The bacterial actin homolog, MreB, is highly conserved among rod-shaped bacteria and essential for growth, making MreB a good focus for antibiotic targeting. Therefore, it is imperative to understand mechanisms that can give rise to resistance to MreB targeting drugs. Using the MreB targeting drug, A22, we show that changes to central metabolism through deletion of TCA cycle genes, leads to the upregulation of gluconeogenesis resulting in cells with an increased minimal inhibitory concentration to A22. This phenotype can be recapitulated through the addition of glucose to the media. Finally, we show that this increase in minimal inhibitory concentration is not specific to A22 but can be seen in other cell wall targeting antibiotics, such as mecillinam.ImportanceThe spread of antibiotic resistance has made bacterial infections harder to treat. Finding new targets for antibiotic development is critical to overcoming the variety of resistance mechanism that are already crippling our ability to treat infections with current antibiotics. The bacterial actin homolog MreB is a good target for new antibiotic development because it is essential for growth and highly conserved among rod-shaped pathogens. The significance of this research is in understanding the mechanisms cells can develop toward the inhibition of MreB to better understand how to make MreB targeting antibiotics in the future.


2018 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
SaurabhRamBihariLal Shrivastava ◽  
PrateekSaurabh Shrivastava ◽  
Jegadeesh Ramasamy

Sign in / Sign up

Export Citation Format

Share Document