scholarly journals Unprecedented Retention Capabilities of Extensive Green Roofs—New Design Approaches and an Open-Source Model

2021 ◽  
Vol 3 ◽  
Author(s):  
Kristian Förster ◽  
Daniel Westerholt ◽  
Philipp Kraft ◽  
Gilbert Lösken

Green roofs are a proven measure to increase evapotranspiration at the expense of runoff, thus complementing contemporary stormwater management efforts to minimize pluvial flooding in cities. This effect has been quantified by numerous studies, ranging from experimental field campaigns to modeling experiments and even combinations of both. However, up until now, most green roof studies consider standard types of green roof dimensions, thus neglecting varying flow length in the substrate. For the first time, we present a comprehensive investigation of green roofs that involves artificial rainfall experiments under laboratory conditions (42 experiments in total). We consider varying flow length and slope. The novelty lies especially in the consideration of flow lengths beyond 5 m and non-declined roofs. This experimental part is complemented by numerical modeling, employing the open-source Catchment Modeling Framework (CMF). This is set-up for Darcy and Richards flow in the green roof and calibrated utilizing a multi-objective approach, considering both runoff and hydraulic head. The results demonstrate that through maximizing flow length and minimizing slope, the runoff coefficient (i.e., percentage of rainfall that becomes runoff) for a 100 years design rainfall is significantly decreased: from ~30% to values below 10%. These findings are confirmed through numerical modeling, which proves its value in terms of achieved model skill (Kling-Gupta Efficiency ranging from 0.5 to 0.95 with a median of 0.78). Both the experimental data and the numerical model are published as open data and open-source software, respectively. Thus, this study provides new insights into green roof design with high practical relevance, whilst being reproducible.

2018 ◽  
Vol 78 (11) ◽  
pp. 2247-2255 ◽  
Author(s):  
Wei Zhang ◽  
Xing Zhong ◽  
Wu Che ◽  
Huichao Sun ◽  
Hailong Zhang

Abstract In this study, laboratory-scale green (e.g. living) roof platforms were established to assess the potential use of polluted river sediment in their substrate mixture. The mean runoff retention of the green roof platforms, which contained peat and/or river sediment, after 11 artificial rainfall events was >72%, significantly higher than traditional roofs. However, green roof platforms that had been filled with peat soil showed chemical oxygen demand (COD), total nitrogen (TN) and total phosphorus (TP) leaching. Green roofs that had used river sediment showed good leaching control for COD, TN and TP. The cumulative leaching masses from the green roofs contained 30% (COD), 42% (TN) and 47% (TP) as much as the total leaching mass from traditional roofs, and the Cu, Zn, Cd and Pb leaching risk from green roofs when river sediments are used as part of a substrate mixture was relatively low. Despite some nutrient leaching in the initial phase of runoff from the green roofs, river sediment has the potential to be used as a substrate for extensive green roofs.


F1000Research ◽  
2021 ◽  
Vol 10 ◽  
pp. 292
Author(s):  
Michael Hewera ◽  
Daniel Hänggi ◽  
Björn Gerlach ◽  
Ulf Dietrich Kahlert

Reports of non-replicable research demand new methods of research data management. Electronic laboratory notebooks (ELNs) are suggested as tools to improve the documentation of research data and make them universally accessible. In a self-guided approach, we introduced the open-source ELN eLabFTW into our lab group and, after using it for a while, think it is a useful tool to overcome hurdles in ELN introduction by providing a combination of properties making it suitable for small preclinical labs, like ours. We set up our instance of eLabFTW, without any further programming needed. Our efforts to embrace open data approach by introducing an ELN fits well with other institutional organized ELN initiatives in academic research.


2019 ◽  
Vol 3 (1) ◽  
pp. 355 ◽  
Author(s):  
Duong Du Bui ◽  
Duc Minh Tran ◽  
Huong Thi Vu ◽  
Nuong Thi Bui

Water security is under severe pressures from human interventions and climate change in all over the world and improved water forecast is essential for water management. HYPE is a semi-distributed hydrographic model, running on Windows or Linux operating systems. The code of the model is written by the Fortran programming language and open source as Lesser GNU Public License. HYPE has been becoming a widely used tool in the forecasting of transboundary flows. However, the application of HYPE encounters many difficulties in processing input data and serving the construction, calibration, and validation of the model. This article introduces the development of the V-HYPE tool that helps a couple of global rainfall data and HYPE model for operational use. V-HYPE allows developing a user-friendly interface and setting parameters of the HYPE model as well as evaluating errors and transforming and visually displaying the results of the model. Besides, the V-HYPE has the ability to show related maps (i.e. sub-basins, river network, lake, and dams, etc), set up input data, automatically download global rainfall data, and visually display results on WebGIS. V-HYPE also can generate bulletins supporting for operational water resources warning and forecasting works in Vietnam. The utilities of this tool are demonstrated in the case study of Serepok river basin.This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium provided the original work is properly cited.


Author(s):  
A. Ajmar ◽  
E. Arco ◽  
P. Boccardo

<p><strong>Abstract.</strong> The rapid growth of methods and techniques to acquire geospatial data has led to a wide availability of overlapping geographic datasets with different characteristics. Road network data sources are today a significant number, with high differences in level of detail and modelling schemas, depending on the main purpose. In addition, continuous information about people and freight movement is today available also in real-time. This type of data is today exchanged between traffic operators using referencing standards as Traffic Message Channel. Integrating these heterogeneous databases, in order to build an added value product, is a serious task in geographical data management. The paper is focus on techniques to conflate the Traffic message Channel logical network on Open Source road network dataset, in order to allow the precise visualisation of traffic data also in real-time.</p><p>A first step of the research was the quality assessment of available Open Source (OS) road network dataset, then, a specific procedure to conflate data was set up, using an iterative process in order to reduce at every step the number of possible matching features. A first application of the enhanced OTM dataset is shown for the city of Turin: real-time open data of traffic flows recorded by road network fixed sensors, made available by the metropolitan Traffic Operation Centre (5T) and based on the TMC location referencing, are matched on the OTM road network, allowing a detailed real-time visualisation of traffic state.</p>


2017 ◽  
Vol 77 (3) ◽  
pp. 670-681 ◽  
Author(s):  
Jiankang Guo ◽  
Yanting Zhang ◽  
Shengquan Che

Abstract Current research has validated the purification of rainwater by a substrate layer of green roofs to some extent, though the effects of the substrate layer on rainwater purification have not been adequately quantified. The present study set up nine extensive green roof experiment combinations based on the current conditions of precipitation characteristics observed in Shanghai, China. Different rain with pollutants were simulated, and the orthogonal design L9 (33) test was conducted to measure purification performance. The purification influences of the extensive green roof substrate layer were quantitatively analyzed in Shanghai to optimize the thickness, proportion of substrate, and sodium polyacrylate content. The experimental outcomes resulted in ammonium nitrogen (NH4+-N), lead (Pb), and zinc (Zn) removal of up to 93.87%, 98.81%, and 94.55% in the artificial rainfall, respectively, and NH4+-N, Pb, and Zn event mean concentration (EMC) was depressed to 0.263 mg/L, 0.002 mg/L and 0.018 mg/L, respectively, which were all well below the pollutant concentrations of artificial rainfall. With reference to the rainfall chemical characteristics of Shanghai, a combination of a 200 mm thickness, proportions of 1:1:2 of Loam: Perlite: Cocopeat and 2 g/L sodium polyacrylate content was suggested for the design of an extensive green roof substrate to purify NH4+-N, Pb and Zn.


2017 ◽  
Vol 77 (4) ◽  
pp. 1007-1014 ◽  
Author(s):  
Wei Zhang ◽  
Xing Zhong ◽  
Wu Che

Abstract To investigate nutrient leaching from extensive green roofs, green roof platforms were established to investigate the effluent quantity and quality during artificial rainfall. When the influent volume reached three times the empty bed volume, for which the cumulative rainfall was around 300 mm, the effluent TP and COD concentrations of green roof platforms filled with peat soil did not tend to stabilize. For a long-term operation, the substrate depths had little significant influence on TN, TP and COD concentrations of the green roof effluents. A normalized cumulative emission process method was proposed to discuss the difference in various pollutant leaching processes. Obvious differences in the leaching process of different contaminants for green roof platforms filled with various substrates were observed. For the green roof filled with modified substrates, the nitrogen and phosphorus pollutant leaching rates were relatively high in the initial stage of green roof operation and the phosphorus leaching rate was higher than that of nitrogen. The green roof is a sink for TN, but not for TP and COD in this study. The outcomes are critical for the selection of green roof substrates and also contribute to green roof maintenance.


2020 ◽  
Author(s):  
Marco Dal Molin ◽  
Dmitri Kavetski ◽  
Fabrizio Fenicia

&lt;p&gt;Hydrological models represent a fundamental tool for linking data with theories in scientific studies. Conceptual models are among the most frequently used type of models in catchment scale studies, due to their low computational requirements and ease of interpretation. Model selection requires the comparison of model alternatives, which is complicated by differences in conceptualization, implementation, and source code availability of the models present in the literature. For this reason, several model-building frameworks have been introduced in the last decade, which facilitate model comparisons by enabling different model alternatives within the same software and numerical architecture. These frameworks, however, have their own limitations, including the difficulty of extension from a user perspective, the requirement of long set-up procedures, and the need of customized input files.&lt;br&gt;Building on the decennial experience with the development and usage of Superflex, a flexible modeling framework for conceptual model building, so far implemented in FORTRAN language and not available as open source, we propose SuperflexPy, an open source Python framework for building conceptual hydrological models. SuperflexPy allows the user to build fully customized models using generic elements (i.e. reservoirs, splitters, junctions, lag functions, etc.) and to arrange them as desired, for example to reflect lumped or semi-distributed model configurations. SuperflexPy is easy to configure through modular initialization scripts, easy to extend with custom functionalities, and easy to interface with other frameworks, making it an essential element for creating a continuous and reproducible pipeline that goes from raw data to model results and interpretation.&lt;br&gt;In this presentation, we will introduce this framework, showcasing some applications and highlighting its potential in the context of open science.&lt;/p&gt;


2021 ◽  
Author(s):  
Wouter Knoben ◽  
Shervan Gharari ◽  
Martyn Clark

&lt;p&gt;Setting up earth system models can be cumbersome and time-consuming. Model-agnostic tasks are typically the same regardless of model used and include definition and delineation of the modeling domain and preprocessing of forcing data and parameter fields. Model-specific tasks include conversion of preprocessed data into model-specific formats and generation of model inputs and run scripts. We present a workflow that includes both model-agnostic and model-specific steps needed to set up the Structure for Unifying Multiple Modeling Alternatives (SUMMA) anywhere on the planet, with the goal of providing a baseline SUMMA set up that can easily be adapted for specific study purposes. The workflow therefore uses open source data with global coverage to derive basin delineations, climatic forcing, and geophysical inputs such as topography, soil and land use parameters. The use of open source data, an open source model and an open source workflow that relies on established software packages results in transparent and reproducible scientific outputs, open to verification and adaptation by the community. The workflow substantially reduces model configuration time for new studies and paves the way for more and stronger scientific contributions in the long term, as it lets the modeler focus on science instead of set up.&lt;/p&gt;


2021 ◽  
Vol 13 (8) ◽  
pp. 4278
Author(s):  
Svetlana Tam ◽  
Jenna Wong

Sustainability addresses the need to reduce the structure’s impact on the environment but does not reduce the environment’s impact on the structure. To explore this relationship, this study focuses on quantifying the impact of green roofs or vegetated roofs on seismic responses such as story displacements, interstory drifts, and floor level accelerations. Using an archetype three-story steel moment frame, nonlinear time history analyses are conducted in OpenSees for a shallow and deep green roof using a suite of ground motions from various distances from the fault to identify key trends and sensitivities in response.


Author(s):  
Shinji Kobayashi ◽  
Luis Falcón ◽  
Hamish Fraser ◽  
Jørn Braa ◽  
Pamod Amarakoon ◽  
...  

Objectives: The emerging COVID-19 pandemic has caused one of the world’s worst health disasters compounded by social confusion with misinformation, the so-called “Infodemic”. In this paper, we discuss how open technology approaches - including data sharing, visualization, and tooling - can address the COVID-19 pandemic and infodemic. Methods: In response to the call for participation in the 2020 International Medical Informatics Association (IMIA) Yearbook theme issue on Medical Informatics and the Pandemic, the IMIA Open Source Working Group surveyed recent works related to the use of Free/Libre/Open Source Software (FLOSS) for this pandemic. Results: FLOSS health care projects including GNU Health, OpenMRS, DHIS2, and others, have responded from the early phase of this pandemic. Data related to COVID-19 have been published from health organizations all over the world. Civic Technology, and the collaborative work of FLOSS and open data groups were considered to support collective intelligence on approaches to managing the pandemic. Conclusion: FLOSS and open data have been effectively used to contribute to managing the COVID-19 pandemic, and open approaches to collaboration can improve trust in data.


Sign in / Sign up

Export Citation Format

Share Document