scholarly journals New Insights About the Sticking Region in Back Squats: An Analysis of Kinematics, Kinetics, and Myoelectric Activity

2021 ◽  
Vol 3 ◽  
Author(s):  
Stian Larsen ◽  
Eirik Kristiansen ◽  
Roland van den Tillaar

The aim of this study was to investigate barbell, joint kinematics, joint kinetics of hip, knee, and ankle in tandem with myoelectric activity around the sticking region in three-repetition maximum (3-RM) back squats among recreationally trained lifters. Unlike previous literature, this study also investigated the event of first-peak deacceleration, which was expected to be the event with the lowest force output. Twenty-five recreationally trained lifters (body mass: 70.8 ± 10.5, age: 24.6 ± 3.4, height: 172 ± 8.5) were tested in 3-RM back squats. A repeated one-way analysis of variance showed that ground reaction force output decreased at first peak deacceleration compared with the other events. Moreover, torso forward lean, hip moment arm, and hip contribution to total moment increased, whereas the knee moment arms and moment contribution to total moment decreased in the sticking region. Also, stable moment arms and moment contributions to total moment were observed for the ankle in the sticking region. Furthermore, the knee extensors together with the soleus muscle decreased myoelectric activity in the post-sticking region, while the gluteus maximus and biceps femoris increased myoelectric activity in the post-sticking region. Our findings suggest that the large hip moment arms and hip contributions to total moment together with a lower myoelectric activity for the hip extensors contribute to a poor biomechanical region for force output and, thereby, to the sticking region among recreationally trained lifters in 3-RM back squats.

2021 ◽  
Vol 3 ◽  
Author(s):  
Stian Larsen ◽  
Eirik Kristiansen ◽  
Eric Helms ◽  
Roland van den Tillaar

Barbell placement and stance width both affect lifting performance in the back squat around the sticking region. However, little is known about how these squat conditions separately could affect the lifting performance. Therefore, this study investigated the effects of stance width and barbell placement upon kinematics, kinetics, and myoelectric activity around the sticking region during a three-repetition maximum back squat. Nine men and nine women (body mass: 76.2 ±11.1, age: 24.9 ± 2.6) performed back squats with four different techniques, such as: high-bar narrow stance (HBNS), high-bar wide stance, low-bar narrow stance, and low-bar wide stance where they lifted 99.2 ± 23.6, 92.9 ± 23.6, 102.5 ± 24.7, and 97.1 ± 25.6 kg, respectively. The main findings were that squatting with a low-bar wide stance condition resulted in larger hip contributions to the total moment than the other squat conditions, whereas squatting with an HBNS resulted in greater knee contributions to the total moment together with higher vastus lateralis and less gluteus maximus myoelectric activity. Our findings suggest that training with an HBNS could be beneficial when targeting the knee extensors and plantar flexors, whereas a low-bar wide stance could be beneficial when targeting the hip extensors.


Author(s):  
Roland van den Tillaar ◽  
Eirik Lindset Kristiansen ◽  
Stian Larsen

This study compared the kinetics, barbell, and joint kinematics and muscle activation patterns between a one-repetition maximum (1-RM) Smith machine squat and isometric squats performed at 10 different heights from the lowest barbell height. The aim was to investigate if force output is lowest in the sticking region, indicating that this is a poor biomechanical region. Twelve resistance trained males (age: 22 ± 5 years, mass: 83.5 ± 39 kg, height: 1.81 ± 0.20 m) were tested. A repeated two-way analysis of variance showed that Force output decreased in the sticking region for the 1-RM trial, while for the isometric trials, force output was lowest between 0–15 cm from the lowest barbell height, data that support the sticking region is a poor biomechanical region. Almost all muscles showed higher activity at 1-RM compared with isometric attempts (p < 0.05). The quadriceps activity decreased, and the gluteus maximus and shank muscle activity increased with increasing height (p ≤ 0.024). Moreover, the vastus muscles decreased only for the 1-RM trial while remaining stable at the same positions in the isometric trials (p = 0.04), indicating that potentiation occurs. Our findings suggest that a co-contraction between the hip and knee extensors, together with potentiation from the vastus muscles during ascent, creates a poor biomechanical region for force output, and thereby the sticking region among recreationally resistance trained males during 1-RM Smith machine squats.


1998 ◽  
Vol 85 (3) ◽  
pp. 927-934 ◽  
Author(s):  
Li Li ◽  
Graham E. Caldwell

The purpose of the present study was to examine the neuromuscular modifications of cyclists to changes in grade and posture. Eight subjects were tested on a computerized ergometer under three conditions with the same work rate (250 W): pedaling on the level while seated, 8% uphill while seated, and 8% uphill while standing (ST). High-speed video was taken in conjunction with surface electromyography (EMG) of six lower extremity muscles. Results showed that rectus femoris, gluteus maximus (GM), and tibialis anterior had greater EMG magnitude in the ST condition. GM, rectus femoris, and the vastus lateralis demonstrated activity over a greater portion of the crank cycle in the ST condition. The muscle activities of gastrocnemius and biceps femoris did not exhibit profound differences among conditions. Overall, the change of cycling grade alone from 0 to 8% did not induce a significant change in neuromuscular coordination. However, the postural change from seated to ST pedaling at 8% uphill grade was accompanied by increased and/or prolonged muscle activity of hip and knee extensors. The observed EMG activity patterns were discussed with respect to lower extremity joint moments. Monoarticular extensor muscles (GM, vastus lateralis) demonstrated greater modifications in activity patterns with the change in posture compared with their biarticular counterparts. Furthermore, muscle coordination among antagonist pairs of mono- and biarticular muscles was altered in the ST condition; this finding provides support for the notion that muscles within these antagonist pairs have different functions.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Wenxin Niu ◽  
Lejun Wang ◽  
Chenghua Jiang ◽  
Ming Zhang

The objective of this study was to investigate the effect of dropping height on the forces of joints and muscles in lower extremities during landing. A total of 10 adult subjects were required to landing from three different heights (32 cm, 52 cm, and 72 cm), and the ground reaction force and kinematics of lower extremities were measured. Then, the experimental data were input into the AnyBody Modeling System, in which software the musculoskeletal system of each subject was modeled. The reverse dynamic analysis was done to calculate the joint and muscle forces for each landing trial, and the effect of dropping-landing on the results was evaluated. The computational simulation showed that, with increasing of dropping height, the vertical forces of all the hip, knee, and ankle joints, and the forces of rectus femoris, gluteus maximus, gluteus medius, vastii, biceps femoris and adductor magnus were all significantly increased. The increased dropping height also resulted in earlier activation of the iliopsoas, rectus femoris, gluteus medius, gluteus minimus, and soleus, but latter activation of the tibialis anterior. The quantitative joint and muscle forces can be used as loading conditions in finite element analysis to calculate stress and strain and energy absorption processes in various tissues of the lower limbs.


2017 ◽  
Vol 01 (03) ◽  
pp. E89-E93 ◽  
Author(s):  
Darryl Cochrane ◽  
Keegan Harnett ◽  
Nicolas Lopez-Villalobos ◽  
Jeremy Hapeta

AbstractDuring rugby scrummaging, front row forwards encounter high levels of force that has been suggested to cause transient fatigue and is likely to reduce subsequent performance. However, little is known about the effect of repetitive scrummaging on force output and onset of fatigue. Twelve male front row forwards (21.5±2.3 yr; height 185.7±4.4 cm; body mass 108.5±7.1 kg) each performed three sets of five maximal-effort isometric scrums for 10 s, with 40 s rest separating each repetition; 2 min recovery was provided between each set. Force output and electromyography (EMG) of the right medial gastrocnemius (MG), biceps femoris (BF), gluteus maximus (GM), erector spinae (ES), rectus abdominis (RA), external oblique (EO), internal oblique (IO), and rectus femoris (RF) were assessed. There was no significant force decrement from performing 15 scrums and no fatigue was detected from EMG median frequency and mean amplitude. For training and practice purposes, coaches and trainers can be confident that 15 individual repetitive static scrums against a machine are unlikely to cause a reduction in force production and promote fatigue. However, the effect of rugby-related activities in conjunction with scrummaging requires further research to determine if transient fatigue is causal to scrummaging for subsequent performance.


2008 ◽  
Vol 24 (4) ◽  
pp. 333-339 ◽  
Author(s):  
D.G.E. Robertson ◽  
Jean-Marie J. Wilson ◽  
Taunya A. St. Pierre

The purpose of this research was to determine the functions of the gluteus maximus, biceps femoris, semitendinosus, rectus femoris, vastus lateralis, soleus, gastrocnemius, and tibialis anterior muscles about their associated joints during full (deep-knee) squats. Muscle function was determined from joint kinematics, inverse dynamics, electromyography, and muscle length changes. The subjects were six experienced, male weight lifters. Analyses revealed that the prime movers during ascent were the monoarticular gluteus maximus and vasti muscles (as exemplified by vastus lateralis) and to a lesser extent the soleus muscles. The biarticular muscles functioned mainly as stabilizers of the ankle, knee, and hip joints by working eccentrically to control descent or transferring energy among the segments during ascent. During the ascent phase, the hip extensor moments of force produced the largest powers followed by the ankle plantar flexors and then the knee extensors. The hip and knee extensors provided the initial bursts of power during ascent with the ankle extensors and especially a second burst from the hip extensors adding power during the latter half of the ascent.


Author(s):  
Nicolay Stien ◽  
Atle Hole Saeterbakken ◽  
Vidar Andersen

Resistance-training exercises can be classified as either single- or multi-joint exercises and differences in surface electromyography (EMG) amplitude between the two training methods may identify which muscles can benefit from either training modality. This study aimed to compare the surface EMG amplitude of five hip- and knee extensors during one multi-joint (leg press) and two single-joint exercises (knee extension and kickback). Fifteen resistance-trained men completed one familiarization session to determine their unilateral six repetitions maximum (6RM) in the three exercises. During the following experimental session, EMG amplitudes of the vastus lateralis, vastus medialis, rectus femoris, gluteus maximus and biceps femoris of the left leg were measured while performing three repetitions on their respective 6RM loads. The multi-joint exercise leg press produced higher EMG amplitude of the vastus lateralis (ES = 0.92, p = 0.003) than the single-joint exercise knee extension, whereas the rectus femoris demonstrated higher EMG amplitude during the knee extension (ES = 0.93, p = 0.005). The biceps femoris EMG amplitude was higher during the single-joint exercise kickback compared to the leg press (ES = 2.27, p < 0.001), while no significant differences in gluteus maximus (ES = 0.08, p = 0.898) or vastus medialis (ES = 0.056, p = 0.025 were observed between exercises. The difference in EMG amplitude between single- and multi-joint exercises appears to vary depending on the specific exercises and the muscle groups tested. Leg press is a viable and time-efficient option for targeting several hip- and knee extensors during resistance training of the lower limbs, but the single-joint exercises may be preferable for targeting the rectus femoris and biceps femoris.


2016 ◽  
Vol 106 (4) ◽  
pp. 257-264 ◽  
Author(s):  
Soul Lee ◽  
Lin Wang ◽  
Jing Xian Li

Background: Carrying a load asymmetrically and walking in high-heeled shoes are common in women. Knowledge of the effects of the two combined conditions on lower-limb kinetics is lacking. We sought to examine the effects of walking in high-heeled shoes and carrying an asymmetrical load on the joint kinetics of the lower extremity in young women. Methods: Fifteen participants were asked to walk in flat-heeled and 9-cm high-heeled shoes and to asymmetrically carry loads of 0% body weight (BW), 5% BW, and 10% BW. The three-dimensional joint moments of the hip, knee, and ankle in each of the walking conditions were studied through ground reaction force measurements and motion analysis. Results: Walking in high-heeled shoes and asymmetrically carrying a load of 5% or 10% BW resulted in significant differences in ankle joint moments of the loaded and unloaded lower limbs. Compared with walking in flat-heeled shoes, walking in high-heeled shoes and carrying a load asymmetrically significantly increased hip extension, hip abduction, knee extension, and knee adduction moments and decreased ankle plantar moment of the loaded leg. Walking in high-heeled shoes carrying a load of 10% BW resulted in greater significant changes in hip abduction, knee extension, and ankle dorsiflexion moments in the loaded leg than did carrying a load of 5% BW. Conclusions: These findings indicate that walking in high-heeled shoes and asymmetrical load carrying create significant differences in joint loading between the two limbs and alter lower-extremity kinetics.


Author(s):  
Aida Cadellans-Arróniz ◽  
Carlos López-de-Celis ◽  
Albert Pérez-Bellmunt ◽  
Jacobo Rodríguez-Sanz ◽  
Luis Llurda-Almuzara ◽  
...  

Introduction. Diacutaneous Fibrolysis is defined as specific instrumental intervention to normalize function in the musculoskeletal system. It is considered a treatment method for the mechanical alterations of the locomotor system, and it is widely used in sports for therapeutic and preventive purposes. Despite the clinical benefits observed in different musculoskeletal conditions, the action mechanism of diacutaneous fibrolysis remains uncertain. There are no studies evaluating the neuromuscular response on the posterior muscular chain of the lower extremity in athletes, where overload, stiffness, and injury incidence are high. Objective. To evaluate the immediate, and 30 min post treatment effects of a single diacutaneous fibrolysis session on passive neuromuscular response and mechanosensitibity on hamstring and gluteus in athletes with shortening. Design. A randomized within participant clinical trial. Methods. Sixty-six athletes with hamstring shortening were included (PKE < 160). The lower limbs were randomized between the experimental limb and control limb, regardless of dominance. A single session of diacutaneous fibrolysis was applied to the posterior gluteus maximus, biceps femoris, and semitendinosus of the experimental lower limb whereas the control limb was not treated. Viscoelastic muscle properties (myotonometry), contractile muscle properties (tensomiography), and mechanosensitivity (algometry) were tested before treatment (T0), after treatment (T1), and 30 min post treatment (T2). Results. Regarding viscoelastic properties, in the intra-group analysis we found statistically significant differences in the experimental limb at T1, decreasing muscle stiffness in gluteus maximus (p < 0.042), in biceps femoris (p < 0.001) and in semitendinosus (p < 0.032). We also observed statistically significant differences in Tone decrease (p < 0.011) and relaxation increase (p < 0.001) in biceps femoris. At T2, the decrease in stiffness in all tested muscles was maintained (p < 0.05). There were statistically significant inter-groups differences in stiffness on gluteus (p < 0.048) and biceps femoris (p < 0.019) and in tone on biceps femoris (p < 0.009) compared to the control limb. For contractile properties, we only found statistically significant differences on maximal radial displacement (Dm) in gluteus, both control and experimental at T2 (p < 0.05) and in biceps femoris control (p < 0.030). No changes were found in the mechanosensitivity. Conclusions. A single session of diacutaneous fibrolysis produces changes in some parameters related to viscoelasticity properties of the biceps femoris and gluteus. There were no changes on contractile properties on semitendinosus. Only small changes on the contractile properties on the gluteus maximus and biceps femoris were found. No effect was found on the mechanosensitivity of the posterior chain muscles in athletes with hamstring shortening.


Sign in / Sign up

Export Citation Format

Share Document