scholarly journals Assessing the Circularity of Nutrient Flows Across Nested Scales for Four Food System Scenarios in the Okanagan Bioregion, BC Canada

2021 ◽  
Vol 5 ◽  
Author(s):  
Robin Harder ◽  
Kent Mullinix ◽  
Sean Smukler

In light of continued nutrient pollution in water bodies and anticipated insecurities related to future nutrient supplies, there is an increasing awareness of the need to use nutrients in a more circular way. As part of a food system design study in the Okanagan bioregion, BC Canada we set out to evaluate different food system scenarios for the year 2050 in terms of nutrient circularity. In doing so, the objective was to evaluate the circularity of nutrient flows not only in the Okanagan, but also in relation to exogenous regions, insofar as nutrient flows relate to feed and food consumption and production in the Okanagan. This is important because feed and food trade means that nutrient inputs to crop production in the Okanagan may make their way into organic residuals outside the Okanagan, and vice versa. If not accounted for, this may lead to a distorted picture when analyzing nutrient circularity. To this effect, we applied an analytical framework and calculation model that explicitly tracks nutrients from crop production to organic residual generation. The results of the study suggest that assessing nutrient circularity across nested scales was critical for two reasons. First, changes in overall nutrient flows in response to population increase and dietary change were found to be more pronounced outside the Okanagan. Second, our analysis clearly revealed the extent to which feed and food trade boost nutrient self-reliance in the Okanagan at the expense of nutrient self-reliance outside the Okanagan. This kind of analysis should therefore be useful to explore, ideally together with food system and organic residual management actors, how different food system and organic residual management scenarios perform in terms of nutrient circularity, in the geographical area being considered, but also how it impacts nutrient flows and circularity in the places with which feed and food are traded.

2019 ◽  
Author(s):  
Matias Heino ◽  
Joseph H. A. Guillaume ◽  
Christoph Müller ◽  
Toshichika Iizumi ◽  
Matti Kummu

Abstract. Climate oscillations are periodically fluctuating oceanic and atmospheric phenomena, which are related to variations in weather patterns and crop yields worldwide. In terms of crop production, the most widespread impacts have been observed for the El Niño Southern Oscillation (ENSO), which has been found to impact crop yields in all continents that produce crops, while two other climate oscillations – the Indian Ocean Dipole (IOD) and the North Atlantic Oscillation (NAO) – have been shown to impact crop production especially in Australia and Europe, respectively. In this study, we analyse the impacts of ENSO, IOD and NAO on the growing conditions of maize, rice, soybean and wheat at the global scale, by utilizing crop yield data from an ensemble of global gridded crop models simulated for a range of crop management scenarios. Our results show that simulated crop yield variability is correlated to climate oscillations to a wide extent (up to almost half of all maize and wheat harvested areas for ENSO) and in several important crop producing areas, e.g. in North America (ENSO, wheat), Australia (IOD & ENSO, wheat) and northern South America (ENSO, soybean). Further, our analyses show that higher sensitivity to these oscillations can be observed for rainfed, and fully fertilized scenarios, while the sensitivity tends to be lower if crops are fully irrigated. Since, the development of ENSO, IOD and NAO can be reliably forecasted in advance, a better understanding about the relationship between crop production and these climate oscillations can improve the resilience of the global food system to climate related shocks.


2020 ◽  
Vol 11 (1) ◽  
pp. 113-128 ◽  
Author(s):  
Matias Heino ◽  
Joseph H. A. Guillaume ◽  
Christoph Müller ◽  
Toshichika Iizumi ◽  
Matti Kummu

Abstract. Climate oscillations are periodically fluctuating oceanic and atmospheric phenomena, which are related to variations in weather patterns and crop yields worldwide. In terms of crop production, the most widespread impacts have been observed for the El Niño–Southern Oscillation (ENSO), which has been found to impact crop yields on all continents that produce crops, while two other climate oscillations – the Indian Ocean Dipole (IOD) and the North Atlantic Oscillation (NAO) – have been shown to especially impact crop production in Australia and Europe, respectively. In this study, we analyse the impacts of ENSO, IOD, and NAO on the growing conditions of maize, rice, soybean, and wheat at the global scale by utilising crop yield data from an ensemble of global gridded crop models simulated for a range of crop management scenarios. Our results show that, while accounting for their potential co-variation, climate oscillations are correlated with simulated crop yield variability to a wide extent (half of all maize and wheat harvested areas for ENSO) and in several important crop-producing areas, e.g. in North America (ENSO, wheat), Australia (IOD and ENSO, wheat), and northern South America (ENSO, soybean). Further, our analyses show that higher sensitivity to these oscillations can be observed for rainfed and fully fertilised scenarios, while the sensitivity tends to be lower if crops were to be fully irrigated. Since the development of ENSO, IOD, and NAO can potentially be forecasted well in advance, a better understanding about the relationship between crop production and these climate oscillations can improve the resilience of the global food system to climate-related shocks.


2016 ◽  
Vol 32 (2) ◽  
pp. 112-130 ◽  
Author(s):  
Caitlin Dorward ◽  
Sean Michael Smukler ◽  
Kent Mullinix

AbstractThere is a growing awareness that climate change, economic instability, resource limitations and population growth are impacting the capacity of the contemporary global food system to meet human nutrition needs. Although there is widespread recognition that food systems must evolve in the face of these issues, a polarized debate has emerged around the merit of global-versus-local approaches to this evolution. Local food system advocates argue that increasing food self-reliance will concomitantly benefit human health, the environment and local economies, while critics argue that only a globalized system will produce enough calories to efficiently and economically feed the world. This debate is strong in British Columbia (BC), Canada, where residents and food security experts have called for increased food self-reliance while the provincial government largely supports export-oriented agriculture. As elsewhere, however, in BC this debate takes place in absence of an understanding of capacity for food self-reliance. The few studies that have previously evaluated self-reliance in this region have been limited in their approach in a number of ways. In this study we use a novel methodology to assess current (2011) status of land-based food self-reliance for a diet satisfying nutritional recommendations and food preferences that accounts for seasonality of crop production and the source of livestock feed, and applied it to the Southwest BC bioregion (SWBC) as a case study. We found that agricultural land use in SWBC is dominated by hay, pasture and corn silage, followed by fruits and vegetables. Fruit and vegetable production comprise 87% of total food crop production in SWBC by weight, and a substantial amount is produced in quantities beyond SWBC need per crop type, representing an export focused commodity with limited contribution to food self-reliance. Results illustrate that SWBC is a major producer of livestock products, but these industries rely on feed grain imports. The production of feed grain could therefore be considered a major constraint on self-reliance; SWBC's total dietary self-reliance is 12% if discounting livestock feed imports or 40% if including them. Results demonstrate that a diet including foods that cannot be grown in the region or consumed fresh out of season, limits potential food self-reliance. Our methods reveal the value of factoring dietary recommendations and food consumption patterns into food self-reliance assessments and the necessity of accounting for the source of livestock feed to fully understand the self-reliance status of a region.


2020 ◽  
Vol 12 (2) ◽  
pp. 702
Author(s):  
Tuure Parviainen ◽  
Juha Helenius

In Finland, while total agricultural production has remained relatively constant, nutrient input from industrial mineral fertilizers has declined over the past 20 years, which has been the target of environmental policies due to eutrophication risks. From 1996 to 2014, the use of nitrogen (N) declined by 18%, phosphorus (P) by 49%, and potassium (K) by 49%. However, at the same time, the international agricultural products trade has increased dramatically by mass (58%), and Finland has increased imports of food and feed products, such as, protein feeds, vegetables, and fruits. We analyzed the nutrient contents of foreign trade from 1996 to 2014 by using a substance flow analysis. We discovered that, when comparing nutrients contained in trade to the use of fertilizers, the trade of food and feed accounts for more than one-third (40%) of the fertilizer input to the Finnish food system. In 2014, 53 Gg of N, 8 Gg of P, and 15 Gg of K were imported due to trade, equating to 35%, 70%, and 45%, respectively, compared to the use of fertilizers in the food system. Declines in fertilizer inputs to crop production are partially offset by flows of plant nutrients from feed imports. In formulating agri-environmental policies targeting nutrient loading, more attention should be paid to national imports–export balances and, especially, to the spatial distribution of flows in feed trade.


2014 ◽  
Vol 30 (4) ◽  
pp. 349-363 ◽  
Author(s):  
Timothy Griffin ◽  
Zach Conrad ◽  
Christian Peters ◽  
Ronit Ridberg ◽  
Ellen Parry Tyler

AbstractFarms producing similar products have become increasingly concentrated geographically over the past century in the United States (US). Due to the concentration of food production, a disruption in key production areas may reduce the availability of certain foods nationwide. For example, climate change poses such a threat, with projections of altered precipitation patterns, increased temperature and pest outbreaks, which may result in reduced crop yields and geographic shifts in crop adaptation. Analyses of the degree to which US regions can satisfy the food needs of their resident populations—a concept we refer to as regional self-reliance (RSR)—are therefore warranted. We focus on the Northeast region because of its high population density and declining agricultural landbase. Our objectives are to: (1) determine how agricultural land is used in the Northeast region; (2) determine the variety and amount of foods produced; and (3) analyze the relationship between food consumption and agricultural output. Annual (2001–2010) data on land area, yield and output of all crops and major livestock categories, as well as seafood landings, were catalogued. National annual (2001–2009) data on food availability were used as a proxy for estimates of food consumption, and these data were downscaled to a regional level and compared with regional production data in order to estimate RSR. In the Northeast region, approximately 65% of land in farms contributed directly to the food supply from 2001 to 2010, although this varied significantly across states. Just over one-half of all land in farms in the region was devoted to the production of livestock feed. The region produced >100 food crops annually from 2001 to 2009, and vegetables represented the majority of food crop production by weight. Chicken accounted for the largest weight of meat products produced. Compared to the Northeast region's share (~6%) of total land in farms in the nation, it accounted for disproportionately higher amounts of the national production of dairy (16%), eggs (13%), chicken (9%), lamb (7%) and vegetables (7%). However, the region accounted for ~22% of the national population and therefore produced a disproportionately low share of food on a per capita basis. RSR for plant-based foods was lowest for pulses (7%) and highest for vegetables (26%). There are four specific factors in the RSR in our analysis, each of which could result in substantial shifts (upward or downward) of the RSR in the future: land used for agriculture, crop (or animal) productivity, population and dietary preferences.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Fatemeh Karandish ◽  
Hamideh Nouri ◽  
Marcela Brugnach

AbstractEnding hunger and ensuring food security are among targets of 2030’s SDGs. While food trade and the embedded (virtual) water (VW) may improve food availability and accessibility for more people all year round, the sustainability and efficiency of food and VW trade needs to be revisited. In this research, we assess the sustainability and efficiency of food and VW trades under two food security scenarios for Iran, a country suffering from an escalating water crisis. These scenarios are (1) Individual Crop Food Security (ICFS), which restricts calorie fulfillment from individual crops and (2) Crop Category Food Security (CCFS), which promotes “eating local” by suggesting food substitution within the crop category. To this end, we simulate the water footprint and VW trades of 27 major crops, within 8 crop categories, in 30 provinces of Iran (2005–2015). We investigate the impacts of these two scenarios on (a) provincial food security (FSp) and exports; (b) sustainable and efficient blue water consumption, and (c) blue VW export. We then test the correlation between agro-economic and socio-environmental indicators and provincial food security. Our results show that most provinces were threatened by unsustainable and inefficient blue water consumption for crop production, particularly in the summertime. This water mismanagement results in 14.41 and 8.45 billion m3 y−1 unsustainable and inefficient blue VW exports under ICFS. “Eating local” improves the FSp value by up to 210% which lessens the unsustainable and inefficient blue VW export from hotspots. As illustrated in the graphical abstract, the FSp value strongly correlates with different agro-economic and socio-environmental indicators, but in different ways. Our findings promote “eating local” besides improving agro-economic and socio-environmental conditions to take transformative steps toward eradicating food insecurity not only in Iran but also in other countries facing water limitations.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Marziyeh Khavari ◽  
Reza Fatahi ◽  
Zabihollah Zamani

AbstractClimate change and population increase are two challenges for crop production in the world. Hazelnut (Corylus avellana L.) is considered an important nut regarding its nutritional and economic values. As a fact, the application of supporting materials as foliage sprays on plants will decrease biotic and abiotic stresses. In this study, the effects of salicylic acid (0, 1 mM and 2.5 mM) and kaolin (0, 3% and 6%) sprays were investigated on morphological, physiological, pomological, and biochemical characteristics of hazelnut. The results showed that 1 mM salicylic acid and 6% kaolin had the best effects on nut and kernel weight compared to control. Biochemical parameters such as chlorophyll a, b, a + b, and carotenoid contents showed that salicylic acid and kaolin improved pigment concentration. Proline and antioxidant contents such as phenolic acids, SOD, APX, and CAT enzyme activities increased by these applications. On the other hand, lipid peroxidation, protein content, and H2O2 content were decreased. Based on the tolerance index result, Merveille de Bollwiller cultivar showed the highest tolerance while 'Fertile de Coutard' had the lowest value. Therefore, hazelnut performance may be improved through exogenous application of the signaling (salicylic acid) and particle film (Kaolin) compounds in warmer climates.


2021 ◽  
Vol 174 ◽  
pp. 105842
Author(s):  
Robin Harder ◽  
Mario Giampietro ◽  
Kent Mullinix ◽  
Sean Smukler
Keyword(s):  

2021 ◽  
Vol 67 (4) ◽  
pp. 3634-3648
Author(s):  
Erika Koppányné Szabó ◽  
Krisztina Takács

By 2050, 9.8 billion people are projected to live on Earth, which means that we need to double our current food production to keep pace with such a large population increase. In addition, rising greenhouse gas emissions and the associated climate change are placing a significant strain on the planet’s ability to sustain itself. However, in order to increase the quantity of proteins of plant origin, it is necessary to increase crop production areas, harvesting frequencies and the quantity of crops produced. Unfortunately, the optimization of these factors is already very close to the available maximum in the current situation. The developed cultivation systems and maximum utilization of the soil power leads to very serious environmental problems, soil destruction, loss of biodiversity and serious environmental pollution through the transport of the produced plant raw materials. This poses a serious challenge to food security and further increases the risk of hunger. There is therefore a need for agricultural practices that can lead to the cultivation of food and feed crops that have better sustainability indicators and are more resilient to climate change, which can be used to safely produce health-promoting feeds, as well as novel and value-added foods. Within this group, a particular problem is presented by the protein supply of the population, as currently about one billion people do not have adequate protein intake. However, conventional protein sources are not sufficient to meet growing protein needs. As mentioned above, food and feed proteins are based on plant proteins. In recent years, a prominent role has been played by the research into alternative proteins and the mapping of their positive and negative properties. Among alternative proteins, special attention has been paid to various yeasts, fungi, bacteria, algae, singe cell proteins (SCPs) and insects. In this paper, we focus on the presentation of algae, particularly microalgae, which are of paramount importance not only because of their significant protein content and favorable amino acid composition, but also because they are also sources of many valuable molecules, such as polyunsaturated fatty acids, pigments, antioxidants, drugs and other biologically active compounds. It is important to learn about microalgae biomass in order to be able to develop innovative health food products.


2013 ◽  
Vol 368 (1619) ◽  
pp. 20120153 ◽  
Author(s):  
Marcia N. Macedo ◽  
Michael T. Coe ◽  
Ruth DeFries ◽  
Maria Uriarte ◽  
Paulo M. Brando ◽  
...  

Large-scale cattle and crop production are the primary drivers of deforestation in the Amazon today. Such land-use changes can degrade stream ecosystems by reducing connectivity, changing light and nutrient inputs, and altering the quantity and quality of streamwater. This study integrates field data from 12 catchments with satellite-derived information for the 176 000 km 2 upper Xingu watershed (Mato Grosso, Brazil). We quantify recent land-use transitions and evaluate the influence of land management on streamwater temperature, an important determinant of habitat quality in small streams. By 2010, over 40 per cent of catchments outside protected areas were dominated (greater than 60% of area) by agriculture, with an estimated 10 000 impoundments in the upper Xingu. Streams in pasture and soya bean watersheds were significantly warmer than those in forested watersheds, with average daily maxima over 4°C higher in pasture and 3°C higher in soya bean. The upstream density of impoundments and riparian forest cover accounted for 43 per cent of the variation in temperature. Scaling up, our model suggests that management practices associated with recent agricultural expansion may have already increased headwater stream temperatures across the Xingu. Although increased temperatures could negatively impact stream biota, conserving or restoring riparian buffers could reduce predicted warming by as much as fivefold.


Sign in / Sign up

Export Citation Format

Share Document