scholarly journals Nutrient Deficiencies Are Key Constraints to Grain Legume Productivity on “Non-responsive” Soils in Sub-Saharan Africa

2021 ◽  
Vol 5 ◽  
Author(s):  
Frederick P. Baijukya ◽  
Joost Van Heerwaarden ◽  
Angelinus C. Franke ◽  
Greta J. Van den Brand ◽  
Samson Foli ◽  
...  

Leguminous plants are known to require phosphorus fertilizers and inoculation with nitrogen fixing rhizobia for optimum yield but other nutrients may also be lacking. In this study, the most limiting nutrients for legume growth were determined in soils where the crops had not responded to P and rhizobial inoculation in field trials, using the double pot technique. Soils were collected from 17 farmers' fields in West Kenya, Northern Nigeria, Eastern and Southern Rwanda, South-west and North-west Sierra Leone. Plant growth and mean biomass were measured on soils to which a full nutrient solution, containing phosphorus (P), potassium (K), magnesium (Mg), sulfur (S) and micronutrients (MN) were added, and which were compared to a control (no nutrient added), and individual omissions of each nutrient. The relationship between soil properties and nutrient deficiencies was explored. Nutrient limitations were found to differ between soils, both within and across countries. Generally, each soil was potentially deficient in at least one nutrient, with K, P, Mg, MN and S emerging as most limiting in 88, 65, 59, 18, and 12% of tested soils, respectively. While K was the most limiting nutrient in soils from Kenya and Rwanda, P was most limiting in soils from Nigeria. P and K were equally limiting in soils from Sierra Leone. Mg was found limiting in two soils from Kenya and three soils from Rwanda and one soil each in Nigeria and Sierra Leone. Micronutrients were found to be limiting in one soil from Nigeria and one soil from Rwanda. Estimates of nutrient deficiency using growth and mean biomass were found to be correlated with each other although the latter proved to be a more sensitive measure of deficiency. With few exceptions, the relation between soil parameters and nutrient deficiencies was weak and there were no significant relations between deficiency of specific nutrients and the soil content of these elements. Although our results cannot be translated directly to the field, they confirm that individual and multiple nutrient deficiencies were common in these “non-responsive” soils and may have contributed to reported low yields. This highlights the need for balanced nutrition in legume production in SSA.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Nancy S. Matowo ◽  
Jackline Martin ◽  
Manisha A. Kulkarni ◽  
Jacklin F. Mosha ◽  
Eliud Lukole ◽  
...  

AbstractAnopheles funestus is playing an increasing role in malaria transmission in parts of sub-Saharan Africa, where An. gambiae s.s. has been effectively controlled by long-lasting insecticidal nets. We investigated vector population bionomics, insecticide resistance and malaria transmission dynamics in 86 study clusters in North-West Tanzania. An. funestus s.l. represented 94.5% (4740/5016) of all vectors and was responsible for the majority of malaria transmission (96.5%), with a sporozoite rate of 3.4% and average monthly entomological inoculation rate (EIR) of 4.57 per house. Micro-geographical heterogeneity in species composition, abundance and transmission was observed across the study district in relation to key ecological differences between northern and southern clusters, with significantly higher densities, proportions and EIR of An. funestus s.l. collected from the South. An. gambiae s.l. (5.5%) density, principally An. arabiensis (81.1%) and An. gambiae s.s. (18.9%), was much lower and closely correlated with seasonal rainfall. Both An. funestus s.l. and An. gambiae s.l. were similarly resistant to alpha-cypermethrin and permethrin. Overexpression of CYP9K1, CYP6P3, CYP6P4 and CYP6M2 and high L1014S-kdr mutation frequency were detected in An. gambiae s.s. populations. Study findings highlight the urgent need for novel vector control tools to tackle persistent malaria transmission in the Lake Region of Tanzania.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Mamuda Aminu ◽  
Sarah Bar-Zeev ◽  
Sarah White ◽  
Matthews Mathai ◽  
Nynke van den Broek

Abstract Background Every year, an estimated 2.6 million stillbirths occur worldwide, with up to 98% occurring in low- and middle-income countries (LMIC). There is a paucity of primary data on cause of stillbirth from LMIC, and particularly from sub-Saharan Africa to inform effective interventions. This study aimed to identify the cause of stillbirths in low- and middle-income settings and compare methods of assessment. Methods This was a prospective, observational study in 12 hospitals in Kenya, Malawi, Sierra Leone and Zimbabwe. Stillbirths (28 weeks or more) were reviewed to assign the cause of death by healthcare providers, an expert panel and by using computer-based algorithms. Agreement between the three methods was compared using Kappa (κ) analysis. Cause of stillbirth and level of agreement between the methods used to assign cause of death. Results One thousand five hundred sixty-three stillbirths were studied. The stillbirth rate (per 1000 births) was 20.3 in Malawi, 34.7 in Zimbabwe, 38.8 in Kenya and 118.1 in Sierra Leone. Half (50.7%) of all stillbirths occurred during the intrapartum period. Cause of death (range) overall varied by method of assessment and included: asphyxia (18.5–37.4%), placental disorders (8.4–15.1%), maternal hypertensive disorders (5.1–13.6%), infections (4.3–9.0%), cord problems (3.3–6.5%), and ruptured uterus due to obstructed labour (2.6–6.1%). Cause of stillbirth was unknown in 17.9–26.0% of cases. Moderate agreement was observed for cause of stillbirth as assigned by the expert panel and by hospital-based healthcare providers who conducted perinatal death review (κ = 0.69; p < 0.0005). There was only minimal agreement between expert panel review or healthcare provider review and computer-based algorithms (κ = 0.34; 0.31 respectively p < 0.0005). Conclusions For the majority of stillbirths, an underlying likely cause of death could be determined despite limited diagnostic capacity. In these settings, more diagnostic information is, however, needed to establish a more specific cause of death for the majority of stillbirths. Existing computer-based algorithms used to assign cause of death require revision.


2015 ◽  
Vol 18 (17) ◽  
pp. 3155-3165 ◽  
Author(s):  
Muzi Na ◽  
Larissa Jennings ◽  
Sameera A Talegawkar ◽  
Saifuddin Ahmed

AbstractObjectiveTo explore the relationship between women’s empowerment and WHO recommended infant and young child feeding (IYCF) practices in sub-Saharan Africa.DesignAnalysis was conducted using data from ten Demographic and Health Surveys between 2010 and 2013. Women’s empowerment was assessed by nine standard items covering three dimensions: economic, socio-familial and legal empowerment. Three core IYCF practices examined were minimum dietary diversity, minimum meal frequency and minimum acceptable diet. Separate multivariable logistic regression models were applied for the IYCF practices on dimensional and overall empowerment in each country.SettingBenin, Burkina Faso, Ethiopia, Mali, Niger, Nigeria, Rwanda, Sierra Leone, Uganda and Zimbabwe.SubjectsYoungest singleton children aged 6–23 months and their mothers (n 15 153).ResultsLess than 35 %, 60 % and 18 % of children 6–23 months of age met the criterion of minimum dietary diversity, minimum meal frequency and minimum acceptable diet, respectively. In general, likelihood of meeting the recommended IYCF criteria was positively associated with the economic dimension of women’s empowerment. Socio-familial empowerment was negatively associated with the three feeding criteria, except in Zimbabwe. The legal dimension of empowerment did not show any clear pattern in the associations. Greater overall empowerment of women was consistently and positively associated with multiple IYCF practices in Mali, Rwanda and Sierra Leone. However, consistent negative relationships were found in Benin and Niger. Null or mixed results were observed in the remaining countries.ConclusionsThe importance of women’s empowerment for IYCF practices needs to be discussed by context and by dimension of empowerment.


2021 ◽  
Vol 12 ◽  
Author(s):  
Manish Roorkiwal ◽  
Sarita Pandey ◽  
Dil Thavarajah ◽  
R. Hemalatha ◽  
Rajeev K. Varshney

The world faces a grave situation of nutrient deficiency as a consequence of increased uptake of calorie-rich food that threaten nutritional security. More than half the world’s population is affected by different forms of malnutrition. Unhealthy diets associated with poor nutrition carry a significant risk of developing non-communicable diseases, leading to a high mortality rate. Although considerable efforts have been made in agriculture to increase nutrient content in cereals, the successes are insufficient. The number of people affected by different forms of malnutrition has not decreased much in the recent past. While legumes are an integral part of the food system and widely grown in sub-Saharan Africa and South Asia, only limited efforts have been made to increase their nutrient content in these regions. Genetic variation for a majority of nutritional traits that ensure nutritional security in adverse conditions exists in the germplasm pool of legume crops. This diversity can be utilized by selective breeding for increased nutrients in seeds. The targeted identification of precise factors related to nutritional traits and their utilization in a breeding program can help mitigate malnutrition. The principal objective of this review is to present the molecular mechanisms of nutrient acquisition, transport and metabolism to support a biofortification strategy in legume crops to contribute to addressing malnutrition.


Foods ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 1427
Author(s):  
Temitope D. Awobusuyi ◽  
Muthulisi Siwela ◽  
Kirthee Pillay

Protein-energy malnutrition (PEM) is a major health concern in sub-Saharan Africa (SSA). Relying on unexploited and regionally available rich sources of proteins such as insects and sorghum might contribute towards addressing PEM among at-risk populations. Insects are high in nutrients, especially protein, and are abundant in SSA. Sorghum is adapted to the tropical areas of SSA and as such it is an appropriate source of energy compared with temperate cereals like wheat. It is necessary to assess whether cookies fortified with sorghum and termite would be suitable for use in addressing PEM in SSA. Whole grain sorghum meal and termite meal were mixed at a 3:1 ratio (w/w sorghum:termite) to form a sorghum–termite meal blend. Composite cookies were prepared where the sorghum–termite blend partially substituted wheat flour at 20%, 40%, and 60% (sorghum–termite blend:wheat flour (w/w). The functional and nutritional qualities of the cookies were assessed. Compared with the control (100% wheat flour), the cookies fortified with sorghum and termite had about double the quantity of protein, minerals, and amino acids. However, with increased substitution level of the sorghum–termite blend, the spread factor of the cookies decreased. There is a potential to incorporate sorghum and termite in cookies for increased intake of several nutrients by communities that are vulnerable to nutrient deficiencies, especially PEM.


2011 ◽  
Vol 31 (1) ◽  
pp. 139-154 ◽  
Author(s):  
Jonas. N. Chianu ◽  
E. M. Nkonya ◽  
F. S. Mairura ◽  
Justina. N. Chianu ◽  
F. K. Akinnifesi

2020 ◽  
Vol 113 (2) ◽  
pp. 974-979
Author(s):  
Prince C Addae ◽  
Mohammad F Ishiyaku ◽  
Jean-Batiste Tignegre ◽  
Malick N Ba ◽  
Joseph B Bationo ◽  
...  

Abstract Cowpea [Vigna unguiculata (L) Walp.] is an important staple legume in the diet of many households in sub-Saharan Africa. Its production, however, is negatively impacted by many insect pests including bean pod borer, Maruca vitrata F., which can cause 20–80% yield loss. Several genetically engineered cowpea events that contain a cry1Ab gene from Bacillus thuringiensis (Bt) for resistance against M. vitrata were evaluated in Nigeria, Burkina Faso, and Ghana (West Africa), where cowpea is commonly grown. As part of the regulatory safety package, these efficacy data were developed and evaluated by in-country scientists. The Bt-cowpea lines were planted in confined field trials under Insect-proof netting and artificially infested with up to 500 M. vitrata larvae per plant during bud formation and flowering periods. Bt-cowpea lines provided nearly complete pod and seed protection and in most cases resulted in significantly increased seed yield over non-Bt control lines. An integrated pest management strategy that includes use of Bt-cowpea augmented with minimal insecticide treatment for protection against other insects is recommended to control pod borer to enhance cowpea production. The insect resistance management plan is based on the high-dose refuge strategy where non-Bt-cowpea and natural refuges are expected to provide M. vitrata susceptible to Cry1Ab protein. In addition, there will be a limited release of this product until a two-toxin cowpea pyramid is released. Other than South African genetically engineered crops, Bt-cowpea is the first genetically engineered food crop developed by the public sector and approved for release in sub-Saharan Africa.


2012 ◽  
Vol 10 (3) ◽  
pp. 171-176 ◽  
Author(s):  
Christian A. Fatokun ◽  
Ousmane Boukar ◽  
Satoru Muranaka

Cowpea is an important grain legume crop in sub-Saharan Africa (SSA) where, on a worldwide basis, the bulk is produced and consumed. The dry savanna area of SSA is where cowpea is mostly grown under rain-fed conditions. The crop is therefore prone to drought which may occur early, mid and/or late in the cropping season. Compared with many other crops, cowpea is drought tolerant, even though drought is still a major constraint limiting its productivity in SSA. Increasing the level of drought tolerance in existing cowpea varieties grown by farmers would enable them to obtain more and stable yield from their cowpea fields. As a first step towards enhancing drought tolerance in existing cowpea varieties, 1288 lines were selected randomly from cowpea germplasm collections maintained at the International Institute of Tropical Agriculture, and evaluated for their drought tolerance at Ibadan. Drought was imposed by withdrawal of irrigation from 5 weeks after sowing. On average, drought reduced the number of days to flower by 12 d, and the mean grain yield per plant was also reduced by 67.28%. A few of the cowpea lines stayed green for up to 6 weeks after irrigation was stopped, even though some of these produced no pods when the study was terminated. Further evaluation in the screenhouse of 142 selected drought-tolerant lines helped to identify six lines that could be potential parents for developing breeding lines with enhanced drought tolerance.


Sign in / Sign up

Export Citation Format

Share Document