scholarly journals In vivo Infection Dynamics and Human Adaptive Changes of SIVsm-Derived Viral Siblings SIVmac239, SIVB670, and SIVhu in Humanized Mice as a Paralog of HIV-2 Genesis

2021 ◽  
Vol 1 ◽  
Author(s):  
James Z. Curlin ◽  
Kimberly Schmitt ◽  
Leila Remling-Mulder ◽  
Ryan V. Moriarty ◽  
John J. Baczenas ◽  
...  

Simian immunodeficiency virus native to sooty mangabeys (SIVsm) is believed to have given rise to HIV-2 through cross-species transmission and evolution in the human. SIVmac239 and SIVB670, pathogenic to macaques, and SIVhu, isolated from an accidental human infection, also have origins in SIVsm. With their common ancestral lineage as that of HIV-2 from the progenitor SIVsm, but with different passage history in different hosts, they provide a unique opportunity to evaluate cross-species transmission to a new host and their adaptation/evolution both in terms of potential genetic and phenotypic changes. Using humanized mice with a transplanted human system, we evaluated in vivo replication kinetics, CD4+ T cell dynamics and genetic adaptive changes during serial passage with a goal to understand their evolution under human selective immune pressure. All the three viruses readily infected hu-mice causing chronic viremia. While SIVmac and SIVB670 caused CD4+ T cell depletion during sequential passaging, SIVhu with a deletion in nef gene was found to be less pathogenic. Deep sequencing of the genomes of these viruses isolated at different times revealed numerous adaptive mutations of significance that increased in frequency during sequential passages. The ability of these viruses to infect and replicate in humanized mice provides a new small animal model to study SIVs in vivo in addition to more expensive macaques. Since SIVmac and related viruses have been indispensable in many areas of HIV pathogenesis, therapeutics and cure research, availability of this small animal hu-mouse model that is susceptible to both SIV and HIV viruses is likely to open novel avenues of investigation for comparative studies using the same host.

2019 ◽  
Vol 93 (19) ◽  
Author(s):  
Veronica Galli ◽  
Christopher C. Nixon ◽  
Natasa Strbo ◽  
Maria Artesi ◽  
Maria F. de Castro-Amarante ◽  
...  

ABSTRACTHuman T cell leukemia virus type 1 (HTLV-1) is the ethological agent of adult T cell leukemia/lymphoma (ATLL) and a number of lymphocyte-mediated inflammatory conditions, including HTLV-1-associated myelopathy/tropical spastic paraparesis. HTLV-1orf-Iencodes two proteins, p8 and p12, whose functions in humans are to counteract innate and adaptive responses and to support viral transmission. However, thein vivorequirements fororf-Iexpression vary in different animal models. In macaques, the ablation oforf-Iexpression by mutation of its ATG initiation codon abolishes the infectivity of the molecular clone HTLV-1p12KO. In rabbits, HTLV-1p12KOis infective and persists efficiently. We used humanized mouse models to assess the infectivity of both wild-type HTLV-1 (HTLV-1WT) and HTLV-1p12KO. We found that NOD/SCID/γC−/−c-kit+mice engrafted with human tissues 1 day after birth (designated NSG-1d mice) were highly susceptible to infection by HTLV-1WT, with a syndrome characterized by the rapid polyclonal proliferation and infiltration of CD4+CD25+T cells into vital organs, weight loss, and death. HTLV-1 clonality studies revealed the presence of multiple clones of low abundance, confirming the polyclonal expansion of HTLV-1-infected cellsin vivo. HTLV-1p12KOinfection in a bone marrow-liver-thymus (BLT) mouse model prone to graft-versus-host disease occurred only following reversion of theorf-Iinitiation codon mutation within weeks after exposure and was associated with high levels of HTLV-1 DNA in blood and the expansion of CD4+CD25+T cells. Thus, the incomplete reconstitution of the human immune system in BLT mice may provide a window of opportunity for HTLV-1 replication and the selection of viral variants with greater fitness.IMPORTANCEHumanized mice constitute a useful model for studying the HTLV-1-associated polyclonal proliferation of CD4+T cells and viral integration sites in the human genome. The rapid death of infected animals, however, appears to preclude the clonal selection typically observed in human ATLL, which normally develops in 2 to 5% of individuals infected with HTLV-1. Nevertheless, the expansion of multiple clones of low abundance in these humanized mice mirrors the early phase of HTLV-1 infection in humans, providing a useful model to investigate approaches to inhibit virus-induced CD4+T cell proliferation.


2012 ◽  
Vol 190 (1) ◽  
pp. 211-219 ◽  
Author(s):  
Brent E. Palmer ◽  
C. Preston Neff ◽  
Jonathan LeCureux ◽  
Angelica Ehler ◽  
Michelle DSouza ◽  
...  
Keyword(s):  
T Cell ◽  

2022 ◽  
Vol 12 ◽  
Author(s):  
Hui Zhang ◽  
Shuang Cao ◽  
Yang Gao ◽  
Xiao Sun ◽  
Fanming Jiang ◽  
...  

A series of HIV-1 CRF01_AE/CRF07_BC recombinants were previously found to have emerged gradually in a superinfected patient (patient LNA819). However, the extent to which T-cell responses influenced the development of these recombinants after superinfection is unclear. In this study, we undertook a recombination structure analysis of the gag, pol, and nef genes from longitudinal samples of patient LNA819. A total of 9 pol and 5 nef CRF01_AE/CRF07_BC recombinants were detected. The quasispecies makeup and the composition of the pol and nef gene recombinants changed continuously, suggestive of continuous evolution in vivo. T-cell responses targeting peptides of the primary strain and the recombination regions were screened. The results showed that Pol-LY10, Pol-RY9, and Nef-GL9 were the immunodominant epitopes. Pol-LY10 overlapped with the recombination breakpoints in multiple recombinants. For the LY10 epitope, escape from T-cell responses was mediated by both recombination with a CRF07_BC insertion carrying the T467E/T472V variants and T467N/T472V mutations originating in the CRF01_AE strain. In pol recombinants R8 and R9, the recombination breakpoints were located ~23 amino acids upstream of the RY9 epitope. The appearance of new recombination breakpoints harboring a CRF07_BC insertion carrying a R984K variant was associated with escape from RY9-specific T-cell responses. Although the Nef-GL9 epitope was located either within or 10~11 amino acids downstream of the recombination breakpoints, no variant of this epitope was observed in the nef recombinants. Instead, a F85V mutation originating in the CRF01_AE strain was the main immune escape mechanism. Understanding the cellular immune pressure on recombination is critical for monitoring the new circulating recombinant forms of HIV and designing epitope-based vaccines. Vaccines targeting antigens that are less likely to escape immune pressure by recombination and/or mutation are likely to be of benefit to patients with HIV-1.


2020 ◽  
Author(s):  
Gajendra W. Suryawanshi ◽  
Hubert Arokium ◽  
Sanggu Kim ◽  
Wannisa Khamaikawin ◽  
Samantha Lin ◽  
...  

AbstractClonal repopulation of human hemopoietic stem and progenitor cells (HSPC) in humanized mouse models remains only partially understood due to the lack of a quantitative clonal tracking technique for low sample volumes. Here, we present a low-volume vector integration site sequencing (LoVIS-Seq) assay that requires a mere 25μl mouse blood for quantitative clonal tracking of HSPC. Using LoVIS-Seq, we longitudinally tracked 897 VIS clones—providing a first-ever demonstration of clonal dynamics of both therapeutic and control vector-modified human cell populations simultaneously repopulating in humanized mice. Polyclonal repopulation of human cells became stable at 19 weeks post-transplant indicating faster clonal repopulation than observed in humans. Multi-omics data of human fetal liver HSPC revealed that in vivo repopulating clones have significant vector integration bias for H3K36me3-enriched regions. Despite this bias the repopulation remains normal, underscoring the safety of gene therapy vectors. LoVIS-Seq provides an efficient tool for exploring gene therapy and stem cell biology in small-animal models.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 5432-5432
Author(s):  
Mauro Castellarin ◽  
Joseph A. Fraietta ◽  
Jihyun Lee ◽  
John Scholler ◽  
Yangbing Zhao ◽  
...  

Abstract Chimeric antigen receptor (CAR) engineered T cells have been used clinically to improve outcomes in patients with hematopoietic malignancies owing to the ability of CAR T cells to recognize tumor antigens and kill malignant cells. CAR T cells possess the antigen recognizing capability of an antibody through the single chain variable fragment (scFv) and their cytotoxicity is enhanced through signaling via the intracellular domains of T cell receptors and co-activating receptors such as CD3zeta and 4-1BB, respectively. Thus, CAR expressing T cells are able to detect cancer cells through tumor antigens and can become activated to unleash their cytotoxic potentials in a non-MHC restricted manner. Therapeutic side-effects can occur when T-cell receptor targeting is misdirected to the incorrect tissue causing potentially serious on-target off-tumor cytotoxicity. Factors that influence CAR targeting include expression levels of tumor-associated antigen in normal tissue and the binding affinities of scFvs. Our first step in developing an in vivo, on target, off-tumor, CAR T cell toxicity model was to generate mice with tunable expression of a human tumor antigen in normal tissue. NSG mice were IV injected with recombinant adeno-associated virus serotype 8 (rAAV8) to deliver a truncated human ErbB2 (Her2/neu or CD340) gene and a Katushka fluorescent reporter that were driven by the liver-specific promoter, thyroxine binding globulin (TBG). AAV8 genomic copies (GCs) were injected at varying dilutions of 1.5 x 1012 GC/mouse, 7.25 x 1011 GC/mouseand 1.5x1010 GC/mouse to induce a range of expression of ErbB2 in the liver. Katushka expression was visualized in vivo using the IVIS small animal imager. ErbB2 gene expression was detected using reverse transcription polymerase chain reaction (qRT-PCR) and the ErbB2 protein was detected using western blots and immunohistochemistry (IHC). Our data has shown that expression levels of ErbB2 and the Katushka reporter positively correlated with the number of AAV8 GCs that were injected. This enabled us to obtain ErbB2 expression levels in the liver comparable to the levels seen in either ErbB2High tumors (eg. SK-OV3) or ErbB2Low tumors (eg. PC3 and HEK293T). To determine if affinity tuning of scFvs will allow CAR T cells to discriminate between high and low ErbB2 expression in the liver, T cells were engineered to co-express the click beetle red (CBR) reporter and either a high-affinity scFv, anti-ErbB2 CAR (4D5) or a low-affinity scFv, anti-ErbB2 CAR (4D5-5). These T cells were then IV injected into NSG mice that had either high or low ErbB2-expressing livers. Although these experiments were ongoing at the time of abstract submission, we will show our results on T cell trafficking in the liver, which will be visualized by IHC and by in vivo imaging using the IVIS small animal imager. Liver toxicity will be assessed by histological examination and by measuring liver function via standard enzymatic testing of blood. Furthermore, we aim to show whether affinity tuning of scFvs will allow CAR T cells to selectively recognize and target ErbB2High tumors while sparing ErbB2Low normal tissue. This will be performed by inoculating ErbB2high SK-OV3 tumor cells into mice with ErbB2Low livers followed by IV injection with either 4D5 or 4D5-5 CAR T cells. We expect that the low-affinity anti-ErbB2 CAR (4D5-5) T cells will target the ErbB2High SK-OV3 tumor cells and cause tumor regression while preserving function in the ErbB2Low liver. If so, then we will have shown that our pre-clinical mouse model can be used to identify on-target off-tumor CAR T cell toxicity, which will aid in improving the safety profile and clinical outcomes of future CAR T cell therapies. Disclosures Scholler: Novartis: Patents & Royalties. Zhao:Novartis: Patents & Royalties, Research Funding. June:Novartis: Patents & Royalties, Research Funding.


2011 ◽  
Vol 208 (12) ◽  
pp. 2477-2488 ◽  
Author(s):  
Kyeong Cheon Jung ◽  
Chung-Gyu Park ◽  
Yoon Kyung Jeon ◽  
Hyo Jin Park ◽  
Young Larn Ban ◽  
...  

Induction of antigen-specific T cell tolerance would aid treatment of diverse immunological disorders and help prevent allograft rejection and graft versus host disease. In this study, we establish a method of inducing antigen-specific T cell tolerance in situ in diabetic humanized mice and Rhesus monkeys receiving porcine islet xenografts. Antigen-specific T cell tolerance is induced by administration of an antibody ligating a particular epitope on ICAM-1 (intercellular adhesion molecule 1). Antibody-mediated ligation of ICAM-1 on dendritic cells (DCs) led to the arrest of DCs in a semimature stage in vitro and in vivo. Ablation of DCs from mice completely abrogated anti–ICAM-1–induced antigen-specific T cell tolerance. T cell responses to unrelated antigens remained unaffected. In situ induction of DC-mediated T cell tolerance using this method may represent a potent therapeutic tool for preventing graft rejection.


Blood ◽  
2008 ◽  
Vol 111 (8) ◽  
pp. 4293-4296 ◽  
Author(s):  
Noriko Tonomura ◽  
Katsuyoshi Habiro ◽  
Akira Shimizu ◽  
Megan Sykes ◽  
Yong-Guang Yang

Abstract Humanized mice with a functional human immune system would be very useful for in vivo studies of human immunobiology. We have previously shown that cotransplantation of human fetal thymus/liver tissues and CD34+ fetal liver cells into immunodeficient nonobese diabetic severe combined immunodeficiency (NOD/SCID) mice leads to the development of multiple lineages of human lymphohematopoietic cells and formation of secondary lymphoid organs with normal architecture. Here, we evaluated the ability of these humanized mice to develop antigen-specific, T cell–dependent antibody responses after in vivo immunization with T-dependent antigen, 2,4-dinitrophenyl hapten-keyhole limpet hemocyanin (DNP23-KLH). Human T cells from DNP23-KLH–immunized mice showed strong proliferation in response to KLH in vitro. Furthermore, T cell–dependent production of DNP-specific human antibodies (mainly IgG1 and IgG2) was detected in all immunized mice. These results confirm that a functional human immune system can be established in immunodeficient mice through cotransplantation of human fetal thymus/liver tissues and CD34+ hematopoietic stem/progenitor cells.


Blood ◽  
2006 ◽  
Vol 109 (2) ◽  
pp. 674-682 ◽  
Author(s):  
Charlotte V. Cox ◽  
Hannah M. Martin ◽  
Pamela R. Kearns ◽  
Paul Virgo ◽  
Roger S. Evely ◽  
...  

Abstract A significant proportion of children with T-cell acute lymphoblastic leukemia (T-ALL) continue to fail therapy. Consequently, characterization of the cells that proliferate to maintain the disease should provide valuable information on the most relevant therapeutic targets. We have used in vitro suspension culture (SC) and nonobese diabetic–severe combined immune deficient (NOD/SCID) mouse assays to phenotypically characterize and purify T-ALL progenitor cells. Cells from 13 pediatric cases were maintained in vitro for at least 4 weeks and expanded in 8 cases. To characterize the progenitors, cells were sorted for expression of CD34 and CD4 or CD7 and the subfractions were evaluated in vitro and in vivo. The majority of cells capable of long-term proliferation in vitro were derived from the CD34+/CD4− and CD34+/CD7− subfractions. Moreover, the CD34+/CD4− or CD7− cells were the only subfractions capable of NOD/SCID engraftment. These T-ALL cells successfully repopulated secondary and tertiary recipients with equivalent levels of engraftment, demonstrating self-renewal ability. The immunophenotype and genotype of the original leukemia cells were preserved with serial passage in the NOD/SCID mice. These data demonstrate the long-term repopulating ability of the CD34+/CD4− and CD34+/CD7− subfractions in T-ALL and suggest that a cell with a more primitive phenotype was the target for leukemic transformation in these cases.


Viruses ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 645 ◽  
Author(s):  
Hendrik Luxenburger ◽  
Christoph Neumann-Haefelin ◽  
Robert Thimme ◽  
Tobias Boettler

Hepatitis C virus (HCV)-specific T cell responses are closely linked to the clinical course of infection. While T cell responses in self-limiting infection are typically broad and multi-specific, they display several distinct features of functional impairment in the chronic phase. Moreover, HCV readily adapts to immune pressure by developing escape mutations within epitopes targeted by T cells. Much of our current knowledge on HCV-specific T cell responses has been gathered under the assumption that this might eventually pave the way for a therapeutic vaccine. However, with the development of highly efficient direct acting antivirals (DAAs), there is less interest in the development of a therapeutic vaccine for HCV and the scope of T cell research has shifted. Indeed, the possibility to rapidly eradicate an antigen that has persisted over years or decades, and has led to T cell exhaustion and dysfunction, provides the unique opportunity to study potential T cell recovery after antigen cessation in a human in vivo setting. Findings from such studies not only improve our basic understanding of T cell immunity but may also advance immunotherapeutic approaches in cancer or chronic hepatitis B and D infection. Moreover, in order to edge closer to the WHO goal of HCV elimination by 2030, a prophylactic vaccine is clearly required. Thus, in this review, we will summarize our current knowledge on HCV-specific T cell responses and also provide an outlook on the open questions that require answers in this field.


Sign in / Sign up

Export Citation Format

Share Document