scholarly journals Measuring The Rolling Resistance of Pneumobiles

2018 ◽  
Vol 9 (1) ◽  
pp. 227-230
Author(s):  
Bence Márk Szeszák ◽  
György Juhász ◽  
Gusztáv Áron Sziki ◽  
Rita Nagyné Kondor ◽  
Tamás Sádor Sütő ◽  
...  

Abstract In this publication we present a vehicle dynamic model and the motion of equation for pneumobiles. One of the input parameters of the model is the rolling resistance coefficient of the tyres. The present publication describes the experimental setup and work in the course of which the above coefficient was measured and the effect of tyre pressure on rolling resistance was analysed. During the measurement, we examined the effect of tyre pressure on rolling resistance, including when the vehicle in unloaded and in loaded state.

2001 ◽  
Author(s):  
Gene Y. Liao

Abstract Many general-purpose and specialized simulation codes are becoming more flexible which allows analyses to be carried out simultaneously in a coupled manner called co-simulation. Using co-simulation technique, this paper develops an integrated simulation of an Electric Power Steering (EPS) control system with a full vehicle dynamic model. A full vehicle dynamic model interacting with EPS control algorithm is concurrently simulated on a single bump road condition. The effects of EPS on the vehicle dynamic behavior and handling responses resulting from steer and road input are analyzed and compared with proving ground experimental data. The comparisons show reasonable agreement on tie-rod load, rack displacement, steering wheel torque and tire center acceleration. This developed co-simulation capability may be useful for EPS performance evaluation and calibration as well as for vehicle handling performance integration.


2018 ◽  
Vol 19 (12) ◽  
pp. 256-259
Author(s):  
Piotr Wrzecioniarz ◽  
Wojciech Ambroszko ◽  
Aleksandra Pindel

In the paper limitations and exemplary methods of rolling resistance minimization are described. Changes of value of rolling resistance coefficient during years and values for exemplary rolling pairs are presented. Conclusions about future progress are formulated.


2020 ◽  
Author(s):  
Sutisna Nanang Ali

This study presents rolling resistance estimation in the design process of passenger car radial (PCR) tyre by using finite element method. The rolling resistance coefficient of tyres has been becoming one of main requirements within the regulation in many countries as it is related to the level of allowable exhaust gas emission generated by vehicle. Therefore, the tyre being designed must be digitally simulated using finite element method before the tyre is manufactured to provide a high confident level and avoid unnecessary cost related to failure physical product testing. The simulation firstly computes the deformation of several alternative designs of tyres under certain loading, and then the value of deformation force in each tyre component during deformation took place is calculated. The total force of deformation is considered as energy loss or hysteresis loss resulted in tyre rolling resistance. The experiment was carried out on three different tyre designs: two grooves, three grooves, and four grooves. The four groove tyre design gave the smallest rolling resistance coefficient (RRC). Finally, the simulation was continued to compare different crown radius of the tyres and the result shows that the largest crown radius generates the lowest rolling resistance.


2019 ◽  
Vol 26 (1-2) ◽  
pp. 3-18
Author(s):  
Dao-Yong Wang ◽  
Wen-Can Zhang ◽  
Xia-Guang Zeng

In order to reduce the shock and vibration caused by torque disturbance of the gearbox in vehicles equipped with automatic transmission in the process of in situ shift, a novel semi-active hydraulic damping strut is introduced in the powertrain mounting system. The dynamic response evaluation indexes of vehicle in situ shift are put forward, and a 13-degree of freedom vehicle dynamic model including the semi-active hydraulic damping strut is established. The optimized dynamic characteristic parameters are acquired according to the principle of sharing force and the 13-degree of freedom vehicle dynamic model. The dynamic response evaluation indexes with and without the semi-active hydraulic damping strut are calculated using the 13-degree of freedom vehicle dynamic model in the process of in situ shift, and the calculation results show that the vibration of a vehicle can be reduced by the introduction of a semi-active hydraulic damping strut. Experiments are carried out to analyze the vibration response of the vehicle with and without a semi-active hydraulic damping strut, and the results show that the shock and vibration of the vehicle are reduced by introducing the semi-active hydraulic damping strut. The theoretical calculation values of active-side acceleration of the engine mount and torque strut are consistent with the experimental values, which show that the 13-degree of freedom vehicle dynamic model is reasonable.


Author(s):  
S P Rykov ◽  
V N Tarasuyk ◽  
V S Koval ◽  
N I Ovchinnikova ◽  
A I Fedotov ◽  
...  

Author(s):  
Shuhua Su ◽  
Gang Chen

In order to achieve stable steering and path tracking, a lateral robust iterative learning control method for unmanned driving robot vehicle is proposed. Combining the nonlinear tire dynamic model with the vehicle dynamic model, the nonlinear vehicle dynamic model is constructed. The structure of steering manipulator of unmanned driving robot vehicle is analyzed, and the kinematics model and dynamics model of steering manipulator of unmanned driving robot vehicle are established. The structure of vehicle steering system is analyzed, and the dynamic model of vehicle steering system is established. Vehicle steering angle model is established by taking vehicle path tracking error and vehicle yaw angle error as input. Combining with the typical iterative learning control law, the robust term is added to the control law, and a robust iterative learning controller for steering manipulator system of unmanned driving robot vehicle is designed. The proposed controller’s stability and astringency are proved. The effectiveness of the proposed method is verified by comparing it with other control methods and human driver simulation tests.


Sign in / Sign up

Export Citation Format

Share Document