scholarly journals Finding Top-k Nodes for Temporal Closeness in Large Temporal Graphs

Algorithms ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 211 ◽  
Author(s):  
Pierluigi Crescenzi ◽  
Clémence Magnien ◽  
Andrea Marino

The harmonic closeness centrality measure associates, to each node of a graph, the average of the inverse of its distances from all the other nodes (by assuming that unreachable nodes are at infinite distance). This notion has been adapted to temporal graphs (that is, graphs in which edges can appear and disappear during time) and in this paper we address the question of finding the top-k nodes for this metric. Computing the temporal closeness for one node can be done in O(m) time, where m is the number of temporal edges. Therefore computing exactly the closeness for all nodes, in order to find the ones with top closeness, would require O(nm) time, where n is the number of nodes. This time complexity is intractable for large temporal graphs. Instead, we show how this measure can be efficiently approximated by using a “backward” temporal breadth-first search algorithm and a classical sampling technique. Our experimental results show that the approximation is excellent for nodes with high closeness, allowing us to detect them in practice in a fraction of the time needed for computing the exact closeness of all nodes. We validate our approach with an extensive set of experiments.

2014 ◽  
Vol 6 (2) ◽  
pp. 190-205
Author(s):  
Tibor Gregorics

Abstract The A** algorithm is a famous heuristic path-finding algorithm. In this paper its different definitions will be analyzed firstly. Then its memory complexity is going to be investigated. On the one hand, the well-known concept of better-information will be extended to compare the different heuristics in the A** algorithm. On the other hand, a new proof will be given to show that there is no deterministic graph-search algorithm having better memory complexity than A**∗. At last the time complexity of A** will be discussed.


Algorithms ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 124
Author(s):  
Sukhpal Ghuman ◽  
Emanuele Giaquinta ◽  
Jorma Tarhio

We present two modifications of Duval’s algorithm for computing the Lyndon factorization of a string. One of the algorithms has been designed for strings containing runs of the smallest character. It works best for small alphabets and it is able to skip a significant number of characters of the string. Moreover, it can be engineered to have linear time complexity in the worst case. When there is a run-length encoded string R of length ρ , the other algorithm computes the Lyndon factorization of R in O ( ρ ) time and in constant space. It is shown by experimental results that the new variations are faster than Duval’s original algorithm in many scenarios.


2011 ◽  
Vol 8 (3) ◽  
pp. 693-710 ◽  
Author(s):  
Jianmin Zhang ◽  
Shengyu Shen ◽  
Jun Zhang ◽  
Weixia Xu ◽  
LI. Sikun

Explaining the causes of infeasibility of formulas has practical applications in various fields, such as formal verification and electronic design automation. A minimal unsatisfiable subformula provides a succinct explanation of infeasibility and is valuable for applications. The problem of deriving minimal unsatisfiable cores from Boolean formulas has been addressed rather frequently in recent years. However little attention has been concentrated on extraction of unsatisfiable subformulas in Satisfiability Modulo Theories(SMT). In this paper, we propose a depth-firstsearch algorithm and a breadth-first-search algorithm to compute minimal unsatisfiable cores in SMT, adopting different searching strategy. We report and analyze experimental results obtaining from a very extensive test on SMT-LIB benchmarks.


2013 ◽  
Vol 765-767 ◽  
pp. 1533-1536
Author(s):  
Jun Wei Ge ◽  
Yan Feng Wang ◽  
Yi Qiu Fang

This paper puts forward a model combined cloud computing and P2P, and then achieves chord resource search algorithm in the model. Because chord algorithm one hand, does not consider the problem of node heterogeneity, on the other hand, its routing table has large redundant information. So chord algorithm is improved from the two areas, and last MRC-chord is proposed. The algorithm first defines that the nodes of the same geographical form a ring, and in each ring, the node with strongest overall performance is selected to be super cloud node, all of the super cloud nodes form the master ring , then improves routing table. Experimental results show that: the improved algorithm can reduce average routing hops and average network delay effectively, so improves the efficiency of resource search.


1994 ◽  
Vol 29 (4) ◽  
pp. 127-132 ◽  
Author(s):  
Naomi Rea ◽  
George G. Ganf

Experimental results demonstrate bow small differences in depth and water regime have a significant affect on the accumulation and allocation of nutrients and biomass. Because the performance of aquatic plants depends on these factors, an understanding of their influence is essential to ensure that systems function at their full potential. The responses differed for two emergent species, indicating that within this morphological category, optimal performance will fall at different locations across a depth or water regime gradient. The performance of one species was unaffected by growth in mixture, whereas the other performed better in deep water and worse in shallow.


2021 ◽  
Vol 40 (1) ◽  
pp. 551-563
Author(s):  
Liqiong Lu ◽  
Dong Wu ◽  
Ziwei Tang ◽  
Yaohua Yi ◽  
Faliang Huang

This paper focuses on script identification in natural scene images. Traditional CNNs (Convolution Neural Networks) cannot solve this problem perfectly for two reasons: one is the arbitrary aspect ratios of scene images which bring much difficulty to traditional CNNs with a fixed size image as the input. And the other is that some scripts with minor differences are easily confused because they share a subset of characters with the same shapes. We propose a novel approach combing Score CNN, Attention CNN and patches. Attention CNN is utilized to determine whether a patch is a discriminative patch and calculate the contribution weight of the discriminative patch to script identification of the whole image. Score CNN uses a discriminative patch as input and predict the score of each script type. Firstly patches with the same size are extracted from the scene images. Secondly these patches are used as inputs to Score CNN and Attention CNN to train two patch-level classifiers. Finally, the results of multiple discriminative patches extracted from the same image via the above two classifiers are fused to obtain the script type of this image. Using patches with the same size as inputs to CNN can avoid the problems caused by arbitrary aspect ratios of scene images. The trained classifiers can mine discriminative patches to accurately identify some confusing scripts. The experimental results show the good performance of our approach on four public datasets.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Hossein Ahmadvand ◽  
Fouzhan Foroutan ◽  
Mahmood Fathy

AbstractData variety is one of the most important features of Big Data. Data variety is the result of aggregating data from multiple sources and uneven distribution of data. This feature of Big Data causes high variation in the consumption of processing resources such as CPU consumption. This issue has been overlooked in previous works. To overcome the mentioned problem, in the present work, we used Dynamic Voltage and Frequency Scaling (DVFS) to reduce the energy consumption of computation. To this goal, we consider two types of deadlines as our constraint. Before applying the DVFS technique to computer nodes, we estimate the processing time and the frequency needed to meet the deadline. In the evaluation phase, we have used a set of data sets and applications. The experimental results show that our proposed approach surpasses the other scenarios in processing real datasets. Based on the experimental results in this paper, DV-DVFS can achieve up to 15% improvement in energy consumption.


1993 ◽  
Vol 8 (9) ◽  
pp. 2344-2353 ◽  
Author(s):  
J-M. Berthelot ◽  
Souda M. Ben ◽  
J.L. Robert

The experimental study of wave attenuation in concrete has been achieved in the case of the propagation of plane waves in concrete rods. Different mortars and concretes have been investigated. A transmitter transducer coupled to one of the ends of the concrete rod generates the propagation of a plane wave in the rod. The receiver transducer, similar to the previous one, is coupled to the other end of the rod. The experimental results lead to an analytical expression for wave attenuation as function of the concrete composition, the propagation distance, and the wave frequency.


Robotics ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 68
Author(s):  
Lei Shi ◽  
Cosmin Copot ◽  
Steve Vanlanduit

In gaze-based Human-Robot Interaction (HRI), it is important to determine human visual intention for interacting with robots. One typical HRI interaction scenario is that a human selects an object by gaze and a robotic manipulator will pick up the object. In this work, we propose an approach, GazeEMD, that can be used to detect whether a human is looking at an object for HRI application. We use Earth Mover’s Distance (EMD) to measure the similarity between the hypothetical gazes at objects and the actual gazes. Then, the similarity score is used to determine if the human visual intention is on the object. We compare our approach with a fixation-based method and HitScan with a run length in the scenario of selecting daily objects by gaze. Our experimental results indicate that the GazeEMD approach has higher accuracy and is more robust to noises than the other approaches. Hence, the users can lessen cognitive load by using our approach in the real-world HRI scenario.


1948 ◽  
Vol 21 (4) ◽  
pp. 853-859
Author(s):  
R. F. A. Altman

Abstract As numerous investigators have shown, some of the nonrubber components of Hevea latex have a decided accelerating action on the process of vulcanization. A survey of the literature on this subject points to the validity of certain general facts. 1. Among the nonrubber components of latex which have been investigated, certain nitrogenous bases appear to be most important for accelerating the rate of vulcanization. 2. These nitrogen bases apparently occur partly naturally in fresh latex, and partly as the result of putrefaction, heating, and other decomposition processes. 3. The nitrogen bases naturally present in fresh latex at later stages have been identified by Altman to be trigonelline, stachhydrine, betonicine, choline, methylamine, trimethylamine, and ammonia. These bases are markedly active in vulcanization, as will be seen in the section on experimental results. 4. The nitrogenous substances formed by the decomposition processes have only partly been identified, on the one hand as tetra- and pentamethylene diamine and some amino acids, on the other hand as alkaloids, proline, diamino acids, etc. 5. It has been generally accepted that these nitrogenous substances are derived from the proteins of the latex. 6. Decomposition appears to be connected with the formation of a considerable amount of acids. 7. The production of volatile nitrogen bases as a rule accompanies the decomposition processes. These volatile products have not been identified. 8. The active nitrogen bases, either already formed or derived from complex nitrogenous substances, seem to be soluble in water but only slightly soluble in acetone.


Sign in / Sign up

Export Citation Format

Share Document