scholarly journals Distributed Graph Diameter Approximation

Algorithms ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 216
Author(s):  
Matteo Ceccarello ◽  
Andrea Pietracaprina ◽  
Geppino Pucci ◽  
Eli Upfal

We present an algorithm for approximating the diameter of massive weighted undirected graphs on distributed platforms supporting a MapReduce-like abstraction. In order to be efficient in terms of both time and space, our algorithm is based on a decomposition strategy which partitions the graph into disjoint clusters of bounded radius. Theoretically, our algorithm uses linear space and yields a polylogarithmic approximation guarantee; most importantly, for a large family of graphs, it features a round complexity asymptotically smaller than the one exhibited by a natural approximation algorithm based on the state-of-the-art Δ-stepping SSSP algorithm, which is its only practical, linear-space competitor in the distributed setting. We complement our theoretical findings with a proof-of-concept experimental analysis on large benchmark graphs, which suggests that our algorithm may attain substantial improvements in terms of running time compared to the aforementioned competitor, while featuring, in practice, a similar approximation ratio.

2021 ◽  
Vol 14 (7) ◽  
pp. 1137-1149
Author(s):  
Yahui Sun ◽  
Xiaokui Xiao ◽  
Bin Cui ◽  
Saman Halgamuge ◽  
Theodoros Lappas ◽  
...  

Given an undirected graph and a number of vertex groups, the group Steiner trees problem is to find a tree such that (i) this tree contains at least one vertex in each vertex group; and (ii) the sum of vertex and edge weights in this tree is minimized. Solving this problem is useful in various scenarios, ranging from social networks to knowledge graphs. Most existing work focuses on solving this problem in vertex-unweighted graphs, and not enough work has been done to solve this problem in graphs with both vertex and edge weights. Here, we develop several algorithms to address this issue. Initially, we extend two algorithms from vertex-unweighted graphs to vertex- and edge-weighted graphs. The first one has no approximation guarantee, but often produces good solutions in practice. The second one has an approximation guarantee of |Γ| - 1, where |Γ| is the number of vertex groups. Since the extended (|Γ| - 1)-approximation algorithm is too slow when all vertex groups are large, we develop two new (|Γ| - 1)-approximation algorithms that overcome this weakness. Furthermore, by employing a dynamic programming approach, we develop another (|Γ| - h + 1)-approximation algorithm, where h is a parameter between 2 and |Γ|. Experiments show that, while no algorithm is the best in all cases, our algorithms considerably outperform the state of the art in many scenarios.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Jens Zentgraf ◽  
Sven Rahmann

Abstract Motivation With an increasing number of patient-derived xenograft (PDX) models being created and subsequently sequenced to study tumor heterogeneity and to guide therapy decisions, there is a similarly increasing need for methods to separate reads originating from the graft (human) tumor and reads originating from the host species’ (mouse) surrounding tissue. Two kinds of methods are in use: On the one hand, alignment-based tools require that reads are mapped and aligned (by an external mapper/aligner) to the host and graft genomes separately first; the tool itself then processes the resulting alignments and quality metrics (typically BAM files) to assign each read or read pair. On the other hand, alignment-free tools work directly on the raw read data (typically FASTQ files). Recent studies compare different approaches and tools, with varying results. Results We show that alignment-free methods for xenograft sorting are superior concerning CPU time usage and equivalent in accuracy. We improve upon the state of the art sorting by presenting a fast lightweight approach based on three-way bucketed quotiented Cuckoo hashing. Our hash table requires memory comparable to an FM index typically used for read alignment and less than other alignment-free approaches. It allows extremely fast lookups and uses less CPU time than other alignment-free methods and alignment-based methods at similar accuracy. Several engineering steps (e.g., shortcuts for unsuccessful lookups, software prefetching) improve the performance even further. Availability Our software xengsort is available under the MIT license at http://gitlab.com/genomeinformatics/xengsort. It is written in numba-compiled Python and comes with sample Snakemake workflows for hash table construction and dataset processing.


2021 ◽  
Vol 52 (1) ◽  
Author(s):  
Fabienne Archer ◽  
Alexandra Bobet-Erny ◽  
Maryline Gomes

AbstractThe number and severity of diseases affecting lung development and adult respiratory function have stimulated great interest in developing new in vitro models to study lung in different species. Recent breakthroughs in 3-dimensional (3D) organoid cultures have led to new physiological in vitro models that better mimic the lung than conventional 2D cultures. Lung organoids simulate multiple aspects of the real organ, making them promising and useful models for studying organ development, function and disease (infection, cancer, genetic disease). Due to their dynamics in culture, they can serve as a sustainable source of functional cells (biobanking) and be manipulated genetically. Given the differences between species regarding developmental kinetics, the maturation of the lung at birth, the distribution of the different cell populations along the respiratory tract and species barriers for infectious diseases, there is a need for species-specific lung models capable of mimicking mammal lungs as they are of great interest for animal health and production, following the One Health approach. This paper reviews the latest developments in the growing field of lung organoids.


Database ◽  
2021 ◽  
Vol 2021 ◽  
Author(s):  
Yifan Shao ◽  
Haoru Li ◽  
Jinghang Gu ◽  
Longhua Qian ◽  
Guodong Zhou

Abstract Extraction of causal relations between biomedical entities in the form of Biological Expression Language (BEL) poses a new challenge to the community of biomedical text mining due to the complexity of BEL statements. We propose a simplified form of BEL statements [Simplified Biological Expression Language (SBEL)] to facilitate BEL extraction and employ BERT (Bidirectional Encoder Representation from Transformers) to improve the performance of causal relation extraction (RE). On the one hand, BEL statement extraction is transformed into the extraction of an intermediate form—SBEL statement, which is then further decomposed into two subtasks: entity RE and entity function detection. On the other hand, we use a powerful pretrained BERT model to both extract entity relations and detect entity functions, aiming to improve the performance of two subtasks. Entity relations and functions are then combined into SBEL statements and finally merged into BEL statements. Experimental results on the BioCreative-V Track 4 corpus demonstrate that our method achieves the state-of-the-art performance in BEL statement extraction with F1 scores of 54.8% in Stage 2 evaluation and of 30.1% in Stage 1 evaluation, respectively. Database URL: https://github.com/grapeff/SBEL_datasets


1998 ◽  
Vol 08 (01) ◽  
pp. 21-66 ◽  
Author(s):  
W. M. P. VAN DER AALST

Workflow management promises a new solution to an age-old problem: controlling, monitoring, optimizing and supporting business processes. What is new about workflow management is the explicit representation of the business process logic which allows for computerized support. This paper discusses the use of Petri nets in the context of workflow management. Petri nets are an established tool for modeling and analyzing processes. On the one hand, Petri nets can be used as a design language for the specification of complex workflows. On the other hand, Petri net theory provides for powerful analysis techniques which can be used to verify the correctness of workflow procedures. This paper introduces workflow management as an application domain for Petri nets, presents state-of-the-art results with respect to the verification of workflows, and highlights some Petri-net-based workflow tools.


2021 ◽  
Vol 7 (4) ◽  
pp. 1-24
Author(s):  
Douglas Do Couto Teixeira ◽  
Aline Carneiro Viana ◽  
Jussara M. Almeida ◽  
Mrio S. Alvim

Predicting mobility-related behavior is an important yet challenging task. On the one hand, factors such as one’s routine or preferences for a few favorite locations may help in predicting their mobility. On the other hand, several contextual factors, such as variations in individual preferences, weather, traffic, or even a person’s social contacts, can affect mobility patterns and make its modeling significantly more challenging. A fundamental approach to study mobility-related behavior is to assess how predictable such behavior is, deriving theoretical limits on the accuracy that a prediction model can achieve given a specific dataset. This approach focuses on the inherent nature and fundamental patterns of human behavior captured in that dataset, filtering out factors that depend on the specificities of the prediction method adopted. However, the current state-of-the-art method to estimate predictability in human mobility suffers from two major limitations: low interpretability and hardness to incorporate external factors that are known to help mobility prediction (i.e., contextual information). In this article, we revisit this state-of-the-art method, aiming at tackling these limitations. Specifically, we conduct a thorough analysis of how this widely used method works by looking into two different metrics that are easier to understand and, at the same time, capture reasonably well the effects of the original technique. We evaluate these metrics in the context of two different mobility prediction tasks, notably, next cell and next distinct cell prediction, which have different degrees of difficulty. Additionally, we propose alternative strategies to incorporate different types of contextual information into the existing technique. Our evaluation of these strategies offer quantitative measures of the impact of adding context to the predictability estimate, revealing the challenges associated with doing so in practical scenarios.


2020 ◽  
Vol 20 (9&10) ◽  
pp. 747-765
Author(s):  
F. Orts ◽  
G. Ortega ◽  
E.M. E.M. Garzon

Despite the great interest that the scientific community has in quantum computing, the scarcity and high cost of resources prevent to advance in this field. Specifically, qubits are very expensive to build, causing the few available quantum computers are tremendously limited in their number of qubits and delaying their progress. This work presents new reversible circuits that optimize the necessary resources for the conversion of a sign binary number into two's complement of N digits. The benefits of our work are two: on the one hand, the proposed two's complement converters are fault tolerant circuits and also are more efficient in terms of resources (essentially, quantum cost, number of qubits, and T-count) than the described in the literature. On the other hand, valuable information about available converters and, what is more, quantum adders, is summarized in tables for interested researchers. The converters have been measured using robust metrics and have been compared with the state-of-the-art circuits. The code to build them in a real quantum computer is given.


1967 ◽  
Vol 71 (677) ◽  
pp. 342-343
Author(s):  
F. H. East

The Aviation Group of the Ministry of Technology (formerly the Ministry of Aviation) is responsible for spending a large part of the country's defence budget, both in research and development on the one hand and production or procurement on the other. In addition, it has responsibilities in many non-defence fields, mainly, but not exclusively, in aerospace.Few developments have been carried out entirely within the Ministry's own Establishments; almost all have required continuous co-operation between the Ministry and Industry. In the past the methods of management and collaboration and the relative responsibilities of the Ministry and Industry have varied with time, with the type of equipment to be developed, with the size of the development project and so on. But over the past ten years there has been a growing awareness of the need to put some system into the complex business of translating a requirement into a specification and a specification into a product within reasonable bounds of time and cost.


2020 ◽  
Author(s):  
David Böhm ◽  
Alexander Grossmann ◽  
Michael Reiche ◽  
Antonia Schrader

Die zeitnahe, transparente und nachhaltige Verbreitung nachprüfbarer wissenschaftlicher Ergebnisse ist eine der wesentlichen Anforderungen an die wissenschaftliche Kommunikation und Infrastruktur. Open Access, also die offene und kostenfreie Nutzung von wissenschaftlicher Literatur, ist hierfür die Grundvoraussetzung. Hochschulen und Universitäten sind in der Regel die Institutionen, an denen Wissenschaftler neue Forschungsergebnisse erzeugen und zur Veröffentlichung als Buch vorbereiten. Neben klassischen Wissenschaftsverlagen veröffentlichen daher immer mehr Hochschulverlage wissenschaftliche Publikationen. Das vorliegende Handbuch beschreibt einen nachhaltigen, allgemeingültigen State-of-the-Art-Workflow zur Herstellung und Distribution von akademischen Büchern, der es Hochschulen und Universitäten ermöglicht, bei weitest möglicher Verbreitung, Sichtbarkeit und Zugänglichkeit eigene Forschungsarbeiten und Graduierungsschriften in digitaler Form im Open Access und als gedrucktes Buch zu veröffentlichen. Dieses Workflow-Modell wird anhand ausgewählter Fallbeispiele als Proof of Concept demonstriert und spiegelt den aktuellen Stand der derzeit im Verlagsbereich technischen und wirtschaftlichen Möglichkeiten wider. Anhand der Fallbeispiele wurden zudem der Zeit-, Kosten- und Personalaufwand erfasst, sodass anderen Hochschulen und Universitäten Anhaltspunkte für nötige Investitionen bei der Gründung und dem Betrieb eigener OA-Hochschulverlage gegeben werden.


2021 ◽  
Vol 11 (23) ◽  
pp. 11241
Author(s):  
Ling Li ◽  
Fei Xue ◽  
Dong Liang ◽  
Xiaofei Chen

Concealed objects detection in terahertz imaging is an urgent need for public security and counter-terrorism. So far, there is no public terahertz imaging dataset for the evaluation of objects detection algorithms. This paper provides a public dataset for evaluating multi-object detection algorithms in active terahertz imaging. Due to high sample similarity and poor imaging quality, object detection on this dataset is much more difficult than on those commonly used public object detection datasets in the computer vision field. Since the traditional hard example mining approach is designed based on the two-stage detector and cannot be directly applied to the one-stage detector, this paper designs an image-based Hard Example Mining (HEM) scheme based on RetinaNet. Several state-of-the-art detectors, including YOLOv3, YOLOv4, FRCN-OHEM, and RetinaNet, are evaluated on this dataset. Experimental results show that the RetinaNet achieves the best mAP and HEM further enhances the performance of the model. The parameters affecting the detection metrics of individual images are summarized and analyzed in the experiments.


Sign in / Sign up

Export Citation Format

Share Document