scholarly journals A Novel Global Key-Value Storage System Based on Kinetic Drives

Algorithms ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 247
Author(s):  
Xiang Cao ◽  
Cheng Li

NoSQL databases are flexible and efficient for many data intensive applications, and the key-value store is one of them. In recent years, a new Ethernet accessed disk drive called the “Kinetic Drive” was developed by Seagate. This new Kinetic Drive is specially designed for key-value stores. Users can directly access data with a Kinetic Drive via its IP address without going through a storage server/layer. With this new innovation, the storage stack and architectures of key-value store systems have been greatly changed. In this paper, we propose a novel global key-value store system based on Kinetic Drives. We explore data management issues including data access, key indexing, data backup, and recovery. We offer scalable solutions with small storage overhead. The performance evaluation shows that our location-aware design and backup approach can reduce the average distance traveled for data access requests.

Author(s):  
Ganesh Chandra Deka

NoSQL databases are designed to meet the huge data storage requirements of cloud computing and big data processing. NoSQL databases have lots of advanced features in addition to the conventional RDBMS features. Hence, the “NoSQL” databases are popularly known as “Not only SQL” databases. A variety of NoSQL databases having different features to deal with exponentially growing data-intensive applications are available with open source and proprietary option. This chapter discusses some of the popular NoSQL databases and their features on the light of CAP theorem.


Author(s):  
Mainak Adhikari ◽  
Sukhendu Kar

NoSQL database provides a mechanism for storage and access of data across multiple storage clusters. NoSQL dabases are finding significant and growing industry to meet the huge data storage requirements of Big data, real time applications, and Cloud Computing. NoSQL databases have lots of advantages over the conventional RDBMS features. NoSQL systems are also referred to as “Not only SQL” to emphasize that they may in fact allow Structured language like SQL, and additionally, they allow Semi Structured as well as Unstructured language. A variety of NoSQL databases having different features to deal with exponentially growing data intensive applications are available with open source and proprietary option mostly prompted and used by social networking sites. This chapter discusses some features and challenges of NoSQL databases and some of the popular NoSQL databases with their features on the light of CAP theorem.


2009 ◽  
Vol 2009 ◽  
pp. 1-13 ◽  
Author(s):  
Ashwin A. Mendon ◽  
Andrew G. Schmidt ◽  
Ron Sass

Modern High-End Computing systems frequently include FPGAs as compute accelerators. These programmable logic devices now support disk controller IP cores which offer the ability to introduce new, innovative functionalities that, previously, were not practical. This article describes one such innovation: a filesystem implemented in hardware. This has the potential of improving the performance of data-intensive applications by connecting secondary storage directly to FPGA compute accelerators. To test the feasibility of this idea, a Hardware Filesystem was designed with four basic operations (open, read, write, and delete). Furthermore, multi-disk and RAID-0 (striping) support has been implemented as an option in the filesystem. A RAM Disk core was created to emulate a SATA disk drive so results on running FPGA systems could be readily measured. By varying the block size from 64 to 4096 bytes, it was found that 1024 bytes gave the best performance while using a very modest 7% of a Xilinx XC4VFX60's slices and only four (of the 232) BRAM blocks available.


2020 ◽  
Author(s):  
Wen Cheng ◽  
Yuqi Zou ◽  
Lingfang Zeng ◽  
Yang Wang

Abstract The write performance of multi-level cell (MLC) is several times slower than single-level cell (SLC); however, the cost per bit of MLC is much lower than SLC. Dual-mode flash (the medium can be partially switched to SLC mode by programming only 1 bit in some cells) can combine SLC and MLC to provide trading density opportunity for performance. In this paper, we present Hercules—a hybrid storage system that couples dual-mode flash memory and hard drive disk (HDD)—based on the content locality principle for high storage performance. The data are divided into two types: the reference data for read operation and the delta data for write operation. The reference data are stored in SLC and the delta data in MLC or HDD in sequential orders. Hercules organizes the metadata for the mapping of the physical locations of the reference blocks and the delta data of the original blocks, intelligently identifies hot/cold data and performs the data migration between MLC and disk for performance improvements. To validate our findings, we implemented Hercules and made evaluation to show that Hercules can effectively improve the data access speed and reduce the response time, compared with the Flashcache storage structure, and in particular, with Hercules, we can achieve 10% performance improvement over the system in absence of hot delta data caching.


2021 ◽  
Vol 48 (3) ◽  
pp. 120-121
Author(s):  
Myungsuk Kim ◽  
Myoungjun Chun ◽  
Duwon Hong ◽  
Yoona Kim ◽  
Geonhee Cho ◽  
...  

NAND flash memory has revolutionized how we manage data in modern digital systems, significant improvements are needed in flash-based storage systems to meet the requirements of emerging data-intensive applications. In this paper, we address the problem of NAND aging markers that represent the wearing degree of NAND cells. Since all flash operations are affected by the wearing status of NAND cells, an accurate NAND aging marker is critical to develop flash optimization techniques. From our evaluation study, we first show that the existing P/E cyclebased aging marker (PeWear) is inadequate to estimate the actual aging status of NAND blocks, thus losing opportunities for further optimizations. To overcome the limitations of PeWear, we propose a new NAND aging marker, RealWear, based on extensive characterization studies using real 3D TLC flash chips. By considering multiple variables that can affect the NAND cell wear, RealWear can accurately indicate the actual wear status of NAND blocks during run time. Using three case studies, we demonstrate that RealWear is effective in enhancing the lifetime and performance of a flash storage system. Our experimental results showed that RealWear can extend the lifetime of individual NAND blocks by 63% and can reduce the GC overhead by 21%. Furthermore, RealWear significantly mitigates read latency fluctuations, guaranteeing that the read latency can be bounded with at most 2 read retry operations.


Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1709
Author(s):  
Agbotiname Lucky Imoize ◽  
Oluwadara Adedeji ◽  
Nistha Tandiya ◽  
Sachin Shetty

The 5G wireless communication network is currently faced with the challenge of limited data speed exacerbated by the proliferation of billions of data-intensive applications. To address this problem, researchers are developing cutting-edge technologies for the envisioned 6G wireless communication standards to satisfy the escalating wireless services demands. Though some of the candidate technologies in the 5G standards will apply to 6G wireless networks, key disruptive technologies that will guarantee the desired quality of physical experience to achieve ubiquitous wireless connectivity are expected in 6G. This article first provides a foundational background on the evolution of different wireless communication standards to have a proper insight into the vision and requirements of 6G. Second, we provide a panoramic view of the enabling technologies proposed to facilitate 6G and introduce emerging 6G applications such as multi-sensory–extended reality, digital replica, and more. Next, the technology-driven challenges, social, psychological, health and commercialization issues posed to actualizing 6G, and the probable solutions to tackle these challenges are discussed extensively. Additionally, we present new use cases of the 6G technology in agriculture, education, media and entertainment, logistics and transportation, and tourism. Furthermore, we discuss the multi-faceted communication capabilities of 6G that will contribute significantly to global sustainability and how 6G will bring about a dramatic change in the business arena. Finally, we highlight the research trends, open research issues, and key take-away lessons for future research exploration in 6G wireless communication.


2021 ◽  
Vol 55 (1) ◽  
pp. 88-98
Author(s):  
Mohammed Islam Naas ◽  
François Trahay ◽  
Alexis Colin ◽  
Pierre Olivier ◽  
Stéphane Rubini ◽  
...  

Tracing is a popular method for evaluating, investigating, and modeling the performance of today's storage systems. Tracing has become crucial with the increase in complexity of modern storage applications/systems, that are manipulating an ever-increasing amount of data and are subject to extreme performance requirements. There exists many tracing tools focusing either on the user-level or the kernel-level, however we observe the lack of a unified tracer targeting both levels: this prevents a comprehensive understanding of modern applications' storage performance profiles. In this paper, we present EZIOTracer, a unified I/O tracer for both (Linux) kernel and user spaces, targeting data intensive applications. EZIOTracer is composed of a userland as well as a kernel space tracer, complemented with a trace analysis framework able to merge the output of the two tracers, and in particular to relate user-level events to kernel-level ones, and vice-versa. On the kernel side, EZIOTracer relies on eBPF to offer safe, low-overhead, low memory footprint, and flexible tracing capabilities. We demonstrate using FIO benchmark the ability of EZIOTracer to track down I/O performance issues by relating events recorded at both the kernel and user levels. We show that this can be achieved with a relatively low overhead that ranges from 2% to 26% depending on the I/O intensity.


Sign in / Sign up

Export Citation Format

Share Document