scholarly journals An Integrated Deep Learning and Belief Rule-Based Expert System for Visual Sentiment Analysis under Uncertainty

Algorithms ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 213
Author(s):  
Sharif Noor Zisad ◽  
Etu Chowdhury ◽  
Mohammad Shahadat Hossain ◽  
Raihan Ul Islam ◽  
Karl Andersson

Visual sentiment analysis has become more popular than textual ones in various domains for decision-making purposes. On account of this, we develop a visual sentiment analysis system, which can classify image expression. The system classifies images by taking into account six different expressions such as anger, joy, love, surprise, fear, and sadness. In our study, we propose an expert system by integrating a Deep Learning method with a Belief Rule Base (known as the BRB-DL approach) to assess an image’s overall sentiment under uncertainty. This BRB-DL approach includes both the data-driven and knowledge-driven techniques to determine the overall sentiment. Our integrated expert system outperforms the state-of-the-art methods of visual sentiment analysis with promising results. The integrated system can classify images with 86% accuracy. The system can be beneficial to understand the emotional tendency and psychological state of an individual.

2020 ◽  
Author(s):  
Pathikkumar Patel ◽  
Bhargav Lad ◽  
Jinan Fiaidhi

During the last few years, RNN models have been extensively used and they have proven to be better for sequence and text data. RNNs have achieved state-of-the-art performance levels in several applications such as text classification, sequence to sequence modelling and time series forecasting. In this article we will review different Machine Learning and Deep Learning based approaches for text data and look at the results obtained from these methods. This work also explores the use of transfer learning in NLP and how it affects the performance of models on a specific application of sentiment analysis.


2021 ◽  
pp. 113558
Author(s):  
You Cao ◽  
Zhijie Zhou ◽  
Changhua Hu ◽  
Shuaiwen Tang ◽  
Jie Wang

Sensors ◽  
2020 ◽  
Vol 20 (10) ◽  
pp. 2778 ◽  
Author(s):  
Mohsen Azimi ◽  
Armin Eslamlou ◽  
Gokhan Pekcan

Data-driven methods in structural health monitoring (SHM) is gaining popularity due to recent technological advancements in sensors, as well as high-speed internet and cloud-based computation. Since the introduction of deep learning (DL) in civil engineering, particularly in SHM, this emerging and promising tool has attracted significant attention among researchers. The main goal of this paper is to review the latest publications in SHM using emerging DL-based methods and provide readers with an overall understanding of various SHM applications. After a brief introduction, an overview of various DL methods (e.g., deep neural networks, transfer learning, etc.) is presented. The procedure and application of vibration-based, vision-based monitoring, along with some of the recent technologies used for SHM, such as sensors, unmanned aerial vehicles (UAVs), etc. are discussed. The review concludes with prospects and potential limitations of DL-based methods in SHM applications.


2020 ◽  
Vol 12 (2) ◽  
pp. 21-34
Author(s):  
Mostefai Abdelkader

In recent years, increasing attention is being paid to sentiment analysis on microblogging platforms such as Twitter. Sentiment analysis refers to the task of detecting whether a textual item (e.g., a tweet) contains an opinion about a topic. This paper proposes a probabilistic deep learning approach for sentiments analysis. The deep learning model used is a convolutional neural network (CNN). The main contribution of this approach is a new probabilistic representation of the text to be fed as input to the CNN. This representation is a matrix that stores for each word composing the message the probability that it belongs to a positive class and the probability that it belongs to a negative class. The proposed approach is evaluated on four well-known datasets HCR, OMD, STS-gold, and a dataset provided by the SemEval-2017 Workshop. The results of the experiments show that the proposed approach competes with the state-of-the-art sentiment analyzers and has the potential to detect sentiments from textual data in an effective manner.


Author(s):  
Md. Mahashin Mia ◽  
Abdullah Al Hasan ◽  
Rahman Atiqur ◽  
Rashed Mustafa

<p><span>An intelligent belief rule base (BRB) based system with internet of things (IoT) integration can evaluate earthquake prediction (EP). This ingenious and rational system can predict earthquake by aggregating changed animal behavior combined with environmental and chemical changes which are taken as real time inputs from sensors. The BRB expert system blends knowledge demonstration criterion like attribute weight, rule weight, belief degree. The intelligent BRB system with IoT predicts the probable occurrence of the earthquake in a region based on the sign and symptoms culled by the persistent sensors. The final result taken from Intelligent BRB system with IoT integration is compared with expert and fuzzy-based system. The projected method gives a better prediction than the up-to-date expert system and fuzzy system</span></p>


Author(s):  
Tawsin Uddin Ahmed ◽  
Mohammad Newaj Jamil ◽  
Mohammad Shahadat Hossain ◽  
Raihan Ul Islam ◽  
Karl Andersson

AbstractThe novel Coronavirus-induced disease COVID-19 is the biggest threat to human health at the present time, and due to the transmission ability of this virus via its conveyor, it is spreading rapidly in almost every corner of the globe. The unification of medical and IT experts is required to bring this outbreak under control. In this research, an integration of both data and knowledge-driven approaches in a single framework is proposed to assess the survival probability of a COVID-19 patient. Several neural networks pre-trained models: Xception, InceptionResNetV2, and VGG Net, are trained on X-ray images of COVID-19 patients to distinguish between critical and non-critical patients. This prediction result, along with eight other significant risk factors associated with COVID-19 patients, is analyzed with a knowledge-driven belief rule-based expert system which forms a probability of survival for that particular patient. The reliability of the proposed integrated system has been tested by using real patient data and compared with expert opinion, where the performance of the system is found promising.


Information ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 374
Author(s):  
Babacar Gaye ◽  
Dezheng Zhang ◽  
Aziguli Wulamu

With the extensive availability of social media platforms, Twitter has become a significant tool for the acquisition of peoples’ views, opinions, attitudes, and emotions towards certain entities. Within this frame of reference, sentiment analysis of tweets has become one of the most fascinating research areas in the field of natural language processing. A variety of techniques have been devised for sentiment analysis, but there is still room for improvement where the accuracy and efficacy of the system are concerned. This study proposes a novel approach that exploits the advantages of the lexical dictionary, machine learning, and deep learning classifiers. We classified the tweets based on the sentiments extracted by TextBlob using a stacked ensemble of three long short-term memory (LSTM) as base classifiers and logistic regression (LR) as a meta classifier. The proposed model proved to be effective and time-saving since it does not require feature extraction, as LSTM extracts features without any human intervention. We also compared our proposed approach with conventional machine learning models such as logistic regression, AdaBoost, and random forest. We also included state-of-the-art deep learning models in comparison with the proposed model. Experiments were conducted on the sentiment140 dataset and were evaluated in terms of accuracy, precision, recall, and F1 Score. Empirical results showed that our proposed approach manifested state-of-the-art results by achieving an accuracy score of 99%.


Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Qizhou Wang ◽  
Maksim Makarenko ◽  
Arturo Burguete Lopez ◽  
Fedor Getman ◽  
Andrea Fratalocchi

Abstract Nanophotonics inverse design is a rapidly expanding research field whose goal is to focus users on defining complex, high-level optical functionalities while leveraging machines to search for the required material and geometry configurations in sub-wavelength structures. The journey of inverse design begins with traditional optimization tools such as topology optimization and heuristics methods, including simulated annealing, swarm optimization, and genetic algorithms. Recently, the blossoming of deep learning in various areas of data-driven science and engineering has begun to permeate nanophotonics inverse design intensely. This review discusses state-of-the-art optimizations methods, deep learning, and more recent hybrid techniques, analyzing the advantages, challenges, and perspectives of inverse design both as a science and an engineering.


Sign in / Sign up

Export Citation Format

Share Document