scholarly journals Linear Iterative Procedure to Solve a Rayleigh–Plesset Equation

Acoustics ◽  
2021 ◽  
Vol 3 (1) ◽  
pp. 212-220
Author(s):  
Christian Vanhille

A nonlinear Rayleigh–Plesset equation for describing the behavior of a gas bubble in an acoustic field written in terms of bubble-volume variation is solved through a linear iterative procedure. The model is validated, and its accuracy and fast convergence are shown through the analysis of several examples of different physical meanings. The simplicity and usefulness of the presented method here in relation to the direct resolution of the whole nonlinear system, which is also discussed, make the method very attractive to solving a problem. This iterative method allows us to solve only linear systems instead of the nonlinear differential problem. Moreover, the implementation of the iterative algorithm includes a tolerance-dependent stopping criterion that is also tested.

Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2610
Author(s):  
Wenzheng Liu ◽  
Qingdong Zeng ◽  
Jun Yao ◽  
Ziyou Liu ◽  
Tianliang Li ◽  
...  

Rock yielding may well take place during hydraulic fracturing in deep reservoirs. The prevailing models based on the linear elastic fracture mechanics (LEFM) are incapable of describing the evolution process of hydraulic fractures accurately. In this paper, a hydro-elasto-plastic model is proposed to investigate the hydraulic fracture propagation in deep reservoirs. The Drucker–Prager plasticity model, Darcy’s law, cubic law and cohesive zone model are employed to describe the plastic deformation, matrix flow, fracture flow and evolution of hydraulic fractures, respectively. Combining the embedded discrete fracture model (EDFM), extended finite element method (XFEM) and finite volume method, a hybrid numerical scheme is presented to carry out simulations. A dual-layer iterative procedure is developed based on the fixed-stress split method, Picard iterative method and Newton–Raphson iterative method. The iterative procedure is used to deal with the coupling between nonlinear deformation with fracture extension and fluid flow. The proposed model is verified against analytical solutions and other numerical simulation results. A series of numerical cases are performed to investigate the influences of rock plasticity, internal friction angle, dilatancy angle and permeability on hydraulic fracture propagation. Finally, the proposed model is extended to simulate multiple hydraulic fracture propagation. The result shows that plastic deformation can enhance the stress-shadowing effect.


2018 ◽  
Vol 777 ◽  
pp. 421-425 ◽  
Author(s):  
Chhengrot Sion ◽  
Chung Hao Hsu

Many methods have been developed to predict the thermal conductivity of the material. Heat transport is complex and it contains many unknown variables, which makes the thermal conductivity hard to define. The iterative solution of Boltzmann transport equation (BTE) can make the numerical calculation and the nanoscale study of heat transfer possible. Here, we review how to apply the iterative method to solve BTE and many linear systems. This method can compute a sequence of progressively accurate iteration to approximate the solution of BTE.


Processes ◽  
2018 ◽  
Vol 6 (8) ◽  
pp. 130 ◽  
Author(s):  
Pavel Praks ◽  
Dejan Brkić

The Colebrook equation is implicitly given in respect to the unknown flow friction factor λ; λ = ζ ( R e , ε * , λ ) which cannot be expressed explicitly in exact way without simplifications and use of approximate calculus. A common approach to solve it is through the Newton–Raphson iterative procedure or through the fixed-point iterative procedure. Both require in some cases, up to seven iterations. On the other hand, numerous more powerful iterative methods such as three- or two-point methods, etc. are available. The purpose is to choose optimal iterative method in order to solve the implicit Colebrook equation for flow friction accurately using the least possible number of iterations. The methods are thoroughly tested and those which require the least possible number of iterations to reach the accurate solution are identified. The most powerful three-point methods require, in the worst case, only two iterations to reach the final solution. The recommended representatives are Sharma–Guha–Gupta, Sharma–Sharma, Sharma–Arora, Džunić–Petković–Petković; Bi–Ren–Wu, Chun–Neta based on Kung–Traub, Neta, and the Jain method based on the Steffensen scheme. The recommended iterative methods can reach the final accurate solution with the least possible number of iterations. The approach is hybrid between the iterative procedure and one-step explicit approximations and can be used in engineering design for initial rough, but also for final fine calculations.


2009 ◽  
Vol 2009 ◽  
pp. 1-9 ◽  
Author(s):  
Xingping Sheng ◽  
Youfeng Su ◽  
Guoliang Chen

We give a modification of minimal residual iteration (MR), which is 1V-DSMR to solve the linear systemAx=b. By analyzing, we find the modifiable iteration to be a projection technique; moreover, the modification of which gives a better (at least the same) reduction of the residual error than MR. In the end, a numerical example is given to demonstrate the reduction of the residual error between the 1V-DSMR and MR.


2019 ◽  
Vol 283 ◽  
pp. 06002
Author(s):  
Yan Ma ◽  
Tao Ma ◽  
Feiyan Zhao

The exact solution of a gas bubble’ volume was obtained based on volume oscillation of a gas bubble. The volume pulsation, acoustic impedance, scattering pressure of a gas bubble, acoustical power of scattering and acoustical scattering cross section of a single bubble are researched in a small amplitude acoustic field. The results show that a big bubble oscillates more violently than that of a small bubble in a weak acoustic field if the linear resonance does not happen. The occurrence of a linear resonance response of a single bubble leads to the volume oscillation and the scattering ability of a gas bubble become stronger. Additionally, the scattering cross section does not depend on the driving pressure. The amplitude of scattering pressure of a big bubble can reach the magnitude compared to the driving pressure when the resonance response occurs.


Sign in / Sign up

Export Citation Format

Share Document