scholarly journals Path Planning for Automatic Guided Vehicles (AGVs) Fusing MH-RRT with Improved TEB

Actuators ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 314
Author(s):  
Jiayi Wang ◽  
Yonghu Luo ◽  
Xiaojun Tan

In this paper, an AGV path planning method fusing multiple heuristics rapidly exploring random tree (MH-RRT) with an improved two-step Timed Elastic Band (TEB) is proposed. The modified RRT integrating multiple heuristics can search a safer, optimal and faster converge global path within a short time, and the improved TEB can optimize both path smoothness and path length. The method is composed of a global path planning procedure and a local path planning procedure, and the Receding Horizon Planning (RHP) strategy is adopted to fuse these two modules. Firstly, the MH-RRT is utilized to generate a state tree structure as prior knowledge, as well as the global path. Then, a receding horizon window is established to select the local goal point. On this basis, an improved two-step TEB is designed to optimize the local path if the current global path is feasible. Various simulations both on static and dynamic environments are conducted to clarify the performance of the proposed MH-RRT and the improved two-step TEB. Furthermore, real applicative experiments verified the effectiveness of the proposed approach.

Robotica ◽  
2014 ◽  
Vol 33 (4) ◽  
pp. 1017-1031 ◽  
Author(s):  
Yingchong Ma ◽  
Gang Zheng ◽  
Wilfrid Perruquetti ◽  
Zhaopeng Qiu

SUMMARYThis paper presents a path planning algorithm for autonomous navigation of non-holonomic mobile robots in complex environments. The irregular contour of obstacles is represented by segments. The goal of the robot is to move towards a known target while avoiding obstacles. The velocity constraints, robot kinematic model and non-holonomic constraint are considered in the problem. The optimal path planning problem is formulated as a constrained receding horizon planning problem and the trajectory is obtained by solving an optimal control problem with constraints. Local minima are avoided by choosing intermediate objectives based on the real-time environment.


Sensors ◽  
2020 ◽  
Vol 20 (5) ◽  
pp. 1488
Author(s):  
Federico Peralta ◽  
Mario Arzamendia ◽  
Derlis Gregor ◽  
Daniel G. Reina ◽  
Sergio Toral

Local path planning is important in the development of autonomous vehicles since it allows a vehicle to adapt their movements to dynamic environments, for instance, when obstacles are detected. This work presents an evaluation of the performance of different local path planning techniques for an Autonomous Surface Vehicle, using a custom-made simulator based on the open-source Robotarium framework. The conducted simulations allow to verify, compare and visualize the solutions of the different techniques. The selected techniques for evaluation include A*, Potential Fields (PF), Rapidly-Exploring Random Trees* (RRT*) and variations of the Fast Marching Method (FMM), along with a proposed new method called Updating the Fast Marching Square method (uFMS). The evaluation proposed in this work includes ways to summarize time and safety measures for local path planning techniques. The results in a Lake environment present the advantages and disadvantages of using each technique. The proposed uFMS and A* have been shown to achieve interesting performance in terms of processing time, distance travelled and security levels. Furthermore, the proposed uFMS algorithm is capable of generating smoother routes.


2021 ◽  
Vol 193 ◽  
pp. 107913
Author(s):  
Yuan Tang ◽  
Yiming Miao ◽  
Ahmed Barnawi ◽  
Bander Alzahrani ◽  
Reem Alotaibi ◽  
...  

2021 ◽  
Vol 9 (7) ◽  
pp. 761
Author(s):  
Liang Zhang ◽  
Junmin Mou ◽  
Pengfei Chen ◽  
Mengxia Li

In this research, a hybrid approach for path planning of autonomous ships that generates both global and local paths, respectively, is proposed. The global path is obtained via an improved artificial potential field (APF) method, which makes up for the shortcoming that the typical APF method easily falls into a local minimum. A modified velocity obstacle (VO) method that incorporates the closest point of approach (CPA) model and the International Regulations for Preventing Collisions at Sea (COLREGS), based on the typical VO method, can be used to get the local path. The contribution of this research is two-fold: (1) improvement of the typical APF and VO methods, making up for previous shortcomings, and integrated COLREGS rules and good seamanship, making the paths obtained more in line with navigation practice; (2) the research included global and local path planning, considering both the safety and maneuverability of the ship in the process of avoiding collision, and studied the whole process of avoiding collision in a relatively entirely way. A case study was then conducted to test the proposed approach in different situations. The results indicate that the proposed approach can find both global and local paths to avoid the target ship.


Sign in / Sign up

Export Citation Format

Share Document