horizon planning
Recently Published Documents


TOTAL DOCUMENTS

53
(FIVE YEARS 10)

H-INDEX

15
(FIVE YEARS 2)

Actuators ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 314
Author(s):  
Jiayi Wang ◽  
Yonghu Luo ◽  
Xiaojun Tan

In this paper, an AGV path planning method fusing multiple heuristics rapidly exploring random tree (MH-RRT) with an improved two-step Timed Elastic Band (TEB) is proposed. The modified RRT integrating multiple heuristics can search a safer, optimal and faster converge global path within a short time, and the improved TEB can optimize both path smoothness and path length. The method is composed of a global path planning procedure and a local path planning procedure, and the Receding Horizon Planning (RHP) strategy is adopted to fuse these two modules. Firstly, the MH-RRT is utilized to generate a state tree structure as prior knowledge, as well as the global path. Then, a receding horizon window is established to select the local goal point. On this basis, an improved two-step TEB is designed to optimize the local path if the current global path is feasible. Various simulations both on static and dynamic environments are conducted to clarify the performance of the proposed MH-RRT and the improved two-step TEB. Furthermore, real applicative experiments verified the effectiveness of the proposed approach.


Author(s):  
Jiayi Wang ◽  
Sanghyun Kim ◽  
Sethu Vijayakumar ◽  
Steve Tonneau

2021 ◽  
Vol 138 ◽  
pp. 103730
Author(s):  
Wissam Bejjani ◽  
Matteo Leonetti ◽  
Mehmet R. Dogar

Author(s):  
Victor Fors ◽  
Pavel Anistratov ◽  
Björn Olofsson ◽  
Lars Nielsen

Abstract A controller for critical vehicle maneuvering is proposed that avoids obstacles and keeps the vehicle on the road while achieving heavy braking. It operates at the limit of friction and is structured in two main steps: a motion-planning step based on receding-horizon planning to obtain acceleration-vector references, and a low-level controller for following these acceleration references and transforming them into actuator commands. The controller is evaluated in a number of challenging scenarios and results in a well behaved vehicle with respect to, e.g., the steering angle, the body slip, and the path. It is also demonstrated that the controller successfully balances braking and avoidance, such that it really takes advantage of the braking possibilities. Specifically, for a moving obstacle it makes use of a widening gap to perform more braking, which is a clear advantage of the online replanning capability if the obstacle should be a moving human or animal. Finally, real-time capabilities are demonstrated. In conclusion, the controller performs well, both from a functional perspective and from a real-time perspective.


2020 ◽  
Vol 12 (10) ◽  
pp. 4264 ◽  
Author(s):  
Younès Dagdougui ◽  
Ahmed Ouammi ◽  
Rachid Benchrifa

This paper presents a smart building energy management system (BEMS), which is in charge of optimally controlling the sustainable operation of a building-integrated-microgrid (BIM). The main objective is to develop an advanced high-level centralized control approach-based model predictive control (MPC) considering variations of renewable sources and loads. A finite-horizon planning optimization problem is developed to control the operation of the BIM. The model can be implemented as a BEMS for the BIM to manipulate the indoor temperature and optimize the operation of the system’s units. A centralized MPC-based algorithm is implemented for the power management scheduling of all sub-systems as well as power exchanges with the electrical grid. The MPC algorithm is verified over case studies applied to two floors residential building considering the climate condition of a typical day of March, where the effects of both loads and thermal resistance of building shell on the operation of the BIM are analyzed via numerical simulations. The analysis shows that 96% of the total electrical load has been fulfilled by the local production where 23% represents the total electric output of the micro-CHP and 73% is the renewable energy production. The deficit, which represents only 4%, is purchased from the electrical distribution network (EDN).


Author(s):  
Shreyas Kousik ◽  
Patrick Holmes ◽  
Ram Vasudevan

Abstract Quadrotors can provide services such as infrastructure inspection and search-and-rescue, which require operating autonomously in cluttered environments. Autonomy is typically achieved with receding-horizon planning, where a short plan is executed while a new one is computed, because sensors receive limited information at any time. To ensure safety and prevent robot loss, plans must be verified as collision free despite uncertainty (e.g, tracking error). Existing spline-based planners dilate obstacles uniformly to compensate for uncertainty, which can be conservative. On the other hand, reachability-based planners can include trajectory-dependent uncertainty as a function of the planned trajectory. This work applies Reachability-based Trajectory Design (RTD) to plan quadrotor trajectories that are safe despite trajectory-dependent tracking error. This is achieved by using zonotopes in a novel way for online planning. Simulations show aggressive flight up to 5 m/s with zero crashes in 500 cluttered, randomized environments.


2019 ◽  
Vol 38 (12-13) ◽  
pp. 1442-1462 ◽  
Author(s):  
Zakary Littlefield ◽  
David Surovik ◽  
Massimo Vespignani ◽  
Jonathan Bruce ◽  
Weifu Wang ◽  
...  

Tensegrity-based robots can achieve locomotion through shape deformation and compliance. They are highly adaptable to their surroundings, and are lightweight, low cost, and physically robust. Their high dimensionality and strongly dynamic nature, however, can complicate motion planning. Efforts to date have primarily considered quasi-static reconfiguration and short-term dynamic motion of tensegrity robots, which do not fully exploit the underlying system dynamics in the long term. Longer-horizon planning has previously required costly search over the full space of valid control inputs. This work synthesizes new and existing approaches to produce dynamic long-term motion while balancing the computational demand. A numerical process based upon quasi-static assumptions is first applied to deform the system into an unstable configuration, causing forward motion. The dynamical characteristics of the result are then altered via a few simple parameters to produce a small but diverse set of useful behaviors. The proposed approach takes advantage of identified symmetries on the prototypical spherical tensegrity robot, which reduce the number of needed gaits but allow motion along different directions. These gaits are first combined with a standard search method to achieve long-term planning in environments where the developed gaits are effective. For more complex environments, the various motion primitives are paired with the fall-back option of random valid actions and are used by an informed sampling-based kinodynamic motion planner with anytime properties. Evaluations using a physics-based model for the prototypical robot demonstrate that modest but efficiently applied search effort can unlock the utility of dynamic tensegrity motion to produce high-quality solutions.


2019 ◽  
Vol 57 (12) ◽  
pp. 3864-3891 ◽  
Author(s):  
Ullah Saif ◽  
Zailin Guan ◽  
Chuangjian Wang ◽  
Cong He ◽  
Lei Yue ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document