scholarly journals Unraveling Green Information Technology Systems as a Global Greenhouse Gas Emission Game-Changer

2019 ◽  
Vol 9 (2) ◽  
pp. 43 ◽  
Author(s):  
Katundu Imasiku ◽  
Valerie Thomas ◽  
Etienne Ntagwirumugara

Green information technology systems (Green ITS) are proposed as a strategy to reduce greenhouse gases (GHGs) emissions and other environmental impacts while supporting ecological sustainable development. The Green ITS concept combines both Green information technology (IT) and Green information system (IS) applications. The Green ITS concept has the potential to combat the carbon emission problem globally, beyond simply Green IT, because it combines management, organizational, and technology dimensions of climate change mitigation and adaptation, especially if supported by global policy. Examples include life cycle assessment software for measuring GHG emissions, and software for monitoring GHG emissions. Previous studies on environmental burdens such as GHGs, water and air pollution, energy losses and other forms of waste alongside socio-economic dependent variables including renewable resources and climate change policies are reviewed and synthesized. The research analysis conjointly points to the usage of renewable resources such as solar and wind as a critical strategy to scale back GHG emissions and enhance green growth. Empirical evidence shows that developed countries can reduce their carbon emissions while developing countries can utilize carbon emission-free technologies as they aspire to achieve development. The two significant benefits of the Green ITS strategy are first, to provide the environmental benefits of reducing greenhouse emissions and other environmental impacts and second, to enhance global green growth, which supports achievement of ecological sustainable development. Green ITS tools support achievement of the UN SDG 7, 13 and 15, which emphasize clean energy, climate action and ecological sustainable development, respectively. Future research directions include the formulation of a strategy to combat GHGs and design of a system to monitor carbon emissions and other waste remotely.

2019 ◽  
Vol 4 (12) ◽  
Author(s):  
T B A

Global warming, climate change is now affecting the world. The effort of the leaders to achieving the sustainable development is from New Urban Agenda (NUA), Sustainable Development Goals (SDG’s) and local level is local authorities.  SDG’s goal number 13 takes urgent action to combat climate change and its impact also SDG’s number 11 to sustainable cities and communities. The gap of this paper  Different cities face different challenges and issues. Local authorities will play a significant role in undertaking policy initiatives to combat carbon emissions of the city. Low Carbon Cities (LCC) is to reduce carbon emissions in all human activities in cities.  The objective of this paper is by applying the LCCF Checklist in planning permission for sustainable development. The methodology of this research is a mixed-method, namely quantitative and qualitative approach. The survey methods are by interview, questionnaire, and observation. Town planners are the subject matter expert in managing the planning permission submission for the development control of their areas. Descriptive statistical analysis will be used to show the willingness of the stakeholders, namely the developers and planning consultants in implementing of the LCCF. The contribution of this research will gauge readiness at the local authorities level. The findings of the LCCF checklist are identified as important in planning permission into the development control process. Surprisingly, that challenges and issues exist in multifaceted policy implementation the LCCF Checklist in a local authority. Finally based on Subang Jaya Municipal Councils, the existing approach in the application of the LCCF Checklist in the development control process will be useful for development control in a local authority towards sustainable development.  


2021 ◽  
Vol 28 (Supplement_1) ◽  
Author(s):  
T Batool ◽  
A Neven ◽  
Y Vanrompay ◽  
M Adnan ◽  
P Dendale

Abstract Funding Acknowledgements Type of funding sources: Other. Main funding source(s): Special Research Fund (BOF), Hasselt University Introduction The transportation sector is one of the major sectors influencing climate change, contributing around 16% of total Greenhouse gases (GHG) emissions. Aviation contributes to 12% of the transport related emissions. Among other climate change impacts, elevated heat exposure is associated with increased cardiac events and exposure to air pollution caused by GHG emissions has also well-known association with increased cardiovascular related morbidity and mortality. The global temperature rise should be restricted to less than 2 °C which requires keeping carbon emission (CO2) less than 2900 billion tonnes by the end of the 21st century. Assuming air travel a major contributing source to GHG, this study aims to raise the awareness about potential carbon emissions reduction due to air travel of international events like a scientific conference. Purpose Due to the global pandemic of COVID-19, the Preventive cardiology conference 2020 which was planned to be held at Malaga Spain, instead was held in virtual online way. This study aims to calculate the contribution of reduced CO2  emissions in tons due to ESC preventive cardiology conference 2020, which was then held online and air travel of the registered participants was avoided. Methods Anonymized participant registration information was used to determine the country and city of the 949 registered participants of the Preventive Cardiology conference 2020. It is assumed that participants would have travelled from the closest airports from their reported city locations to Malaga airport, Spain. At first, the closest city airports were determined using Google maps and flights information, then the flight emissions (direct and indirect CO2-equivalent emissions) per passenger for the given flight distances were calculated. The CO2 emissions (tons) were calculated for round trips in economy class from the participants of 68 nationalities (excluding 60 participants from Spain as they are assumed to take other modes of transport than airplane). Results In total, 1156.51 tons of CO2  emissions were saved by turning the physical conference into a virtual event. This emission amount is equivalent to the annual CO2 production of 108 people living in high-income countries. Conclusion The pandemic situation has forced us to rethink the necessity of trips by air and has shown us the feasibility of digitally organized events. The information from this study can add to the awareness about reduced amount of carbon emission due to air travel by organizing events in a virtual way when possible. Apart from only digitally organized events there are others options to reduce the carbon footprint of conferences such as limiting the number of physical attendees, encouraging the use of relatively sustainable transport modes for participants from nearby countries (e.g. international trains and use of active transport modes at conference venue etc.) and including CO2 emission offsetting costs.


Author(s):  
Dede Long ◽  
Grant H. West ◽  
Rodolfo M. Nayga

Abstract The agriculture and food sectors contribute significantly to greenhouse gas emissions. About 15 percent of food-related carbon emissions are channeled through restaurants. Using a contingent valuation (CV) method with double-bounded dichotomous choice (DBDC) questions, this article investigates U.S. consumers’ willingness to pay (WTP) for an optional restaurant surcharge in support of carbon emission reduction programs. The mean estimated WTP for a surcharge is 6.05 percent of an average restaurant check, while the median WTP is 3.64 percent. Our results show that individuals have a higher WTP when the surcharge is automatically added to restaurant checks. We also find that an information nudge—a short climate change script—significantly increases WTP. Additionally, our results demonstrate that there is heterogeneity in treatment effects across consumers’ age, environmental awareness, and economic views. Our findings suggest that a surcharge program could transfer a meaningful amount of the agricultural carbon reduction burden to consumers that farmers currently shoulder.


Sustainability and nutrition, Environmental impacts, nutrition policy, Sustainable development goals, Food security, Climate change and obesity


2020 ◽  
Vol 12 (19) ◽  
pp. 8118
Author(s):  
Tu Peng ◽  
Xu Yang ◽  
Zi Xu ◽  
Yu Liang

The sustainable development of mankind is a matter of concern to the whole world. Environmental pollution and haze diffusion have greatly affected the sustainable development of mankind. According to previous research, vehicle exhaust emissions are an important source of environmental pollution and haze diffusion. The sharp increase in the number of cars has also made the supply of energy increasingly tight. In this paper, we have explored the use of intelligent navigation technology based on data analysis to reduce the overall carbon emissions of vehicles on road networks. We have implemented a traffic flow prediction method using a genetic algorithm and particle-swarm-optimization-enhanced support vector regression, constructed a model for predicting vehicle exhaust emissions based on predicted road conditions and vehicle fuel consumption, and built our low-carbon-emission-oriented navigation algorithm based on a spatially optimized dynamic path planning algorithm. The results show that our method could help to significantly reduce the overall carbon emissions of vehicles on the road network, which means that our method could contribute to the construction of low-carbon-emission intelligent transportation systems and smart cities.


2019 ◽  
Vol 11 (14) ◽  
pp. 3972 ◽  
Author(s):  
Lebunu Hewage Udara Willhelm Abeydeera ◽  
Jayantha Wadu Mesthrige ◽  
Tharushi Imalka Samarasinghalage

Greenhouse gases such as sulfur dioxide, nitrogen dioxide, and carbon dioxide have been recognized as the prime cause of global climate change, which has received significant global attention. Among these gases, carbon dioxide is considered as the prominent gas which motivated researchers to explore carbon reduction and mitigation strategies. Research work on this domain expands from carbon emission reporting to identifying and implementing carbon mitigation and reduction strategies. A comprehensive study to map global research on carbon emissions is, however, not available. Therefore, based on a scientometric analysis method, this study reviewed the global literature on carbon emissions. A total of 2945 bibliographic records, from 1981 to 2019, were extracted from the Web of Science core collection database and analyzed using techniques such as co-author and co-citation analysis. Findings revealed an increasing trend of publications in the carbon emission research domain, which has been more visible in the past few years, especially during 2016–2018. The most significant contribution to the domain was reported from China, the United States, and England. While most prolific authors and institutions of the domain were from China, authors and institutions from the United States reported the best connection links. It was revealed that evaluating greenhouse gas emissions and estimating the carbon footprint was popular among the researchers. Moreover, climate change and environmental effects of carbon emissions were also significant points of concern in carbon emission research. The key findings of this study will be beneficial for the policymakers, academics, and institutions to determine the future research directions as well as to identify with whom they can consult to assist in developing carbon emission control policies and future carbon reduction targets.


2018 ◽  
Vol 40 (3) ◽  
pp. 283-296
Author(s):  
J. Spencer Atkins ◽  

Much of the climate ethics discussion centers on considerations of compensatory justice and historical accountability. However, little attention is given to supporting and defending the Beneficiary Pays Principle as a guide for policymaking. This principle states that those who have benefitted from an instance of harm have an obligation to compensate those who have been harmed. Thus, this principle implies that those benefitted by industrialization and carbon emission owe compensation to those who have been harmed by climate change. Beneficiary Pays is commonly juxtaposed with Polluter Pays Principle and the Ability to Pay Principle in the relevant literature. Beneficiary Pays withstands objections that raise suspicion for the latter two.


2017 ◽  
pp. 173-180
Author(s):  
Mahesh Patel ◽  
J.G. Rangiya ◽  
K.J Patel

Recognizing the pressing global problem of climate change, the IPCC was formed in 1988 as an apex source to holistically address the issue. It strives to critically congregate best scientific, technical and socio-economic data on global climate change to produce various papers and reports which become standard works of reference (UNEP, 2004). IPCC has contributed extensively to unleash the mitigation potential from the perspective of agriculture, correlating it with climate change policy, environmental quality and ultimately, sustainable development (Working group II, 2007). Agriculture lands form 40- 50% of the earth’s land surface and contribute to 10-12% of the Greenhouse gas (GHG) emissions. In this sector, by improved crop, soil, water, livestock and water management, the mitigation of climate change can be approached in a cost-effective way than other sectors. Hence this paper dwells into the significant role of IPCC to progress towards sustainable development in agriculture sector. It would discuss about how agriculture management activities would decrease GHG emissions and increase carbon sequestration (Technical group V, 2002). In the warming world, precipitation is skewed, sea level is rising, glaciers are melting, acidic levels in oceans are rising and dissolved oxygen in sea water is declining (IPCC, 2014). Hence major river floods are likely, which is a threat to the food production. This paper would highlight the need to limit effects of climate change to achieve sustainable development as the focus, and would further discuss social equity and poverty eradication. It would explore adaptation and mitigation methods to enumerate short and long-term goals to combat climate change from reinvented livestock and crop systems, beneficial land use changes, improved fertilizers and advanced technological perspectives (IPCC, 1990). It would enforce the learnings from IPCC’s contributions enumerating how agriculture must have a high synergy with sustainable development to address global climate change.


2020 ◽  

<p>The long-term forecasting of the energy demand is an important issue of an area’s sustainable development, especially for mega cities such as Beijing. Beijing is changing its energy supply strategy to depend on energy imports from other provinces due to the city’s long-term low carbon sustainable development plan. Beijing has promised that it will reach the peak value of energy consumption by 2050 and the peak value of the carbon emissions by 2030. To understand whether this can be achieved, this study built an energy demand simulation model using the LEAP with different development scenarios. The results show that, the peak value of Beijing’s energy demand is between 108.25 and 131.74 Mtce during the period of 2044 to 2048, while the peak value of carbon emissions is between 134 and 139.38 million tons in 2025. We also find that adjusting the industry structure and improving the tertiary industry’s energy usage efficiency can be efficient ways to reduce energy consumption. These approaches not only reduce the negative influence of the economic development, but also achieve the energy saving and carbon emission reducing requirements. This study provides an interpretation of the implications for the future energy and climate policies of Beijing.</p>


Sign in / Sign up

Export Citation Format

Share Document