scholarly journals Multi-Fidelity Optimization of a Composite Airliner Wing Subject to Structural and Aeroelastic Constraints

Aerospace ◽  
2021 ◽  
Vol 8 (12) ◽  
pp. 398
Author(s):  
Angelos Kafkas ◽  
Spyridon Kilimtzidis ◽  
Athanasios Kotzakolios ◽  
Vassilis Kostopoulos ◽  
George Lampeas

Efficient optimization is a prerequisite to realize the full potential of an aeronautical structure. The success of an optimization framework is predominately influenced by the ability to capture all relevant physics. Furthermore, high computational efficiency allows a greater number of runs during the design optimization process to support decision-making. The efficiency can be improved by the selection of highly optimized algorithms and by reducing the dimensionality of the optimization problem by formulating it using a finite number of significant parameters. A plethora of variable-fidelity tools, dictated by each design stage, are commonly used, ranging from costly high-fidelity to low-cost, low-fidelity methods. Unfortunately, despite rapid solution times, an optimization framework utilizing low-fidelity tools does not necessarily capture the physical problem accurately. At the same time, high-fidelity solution methods incur a very high computational cost. Aiming to bridge the gap and combine the best of both worlds, a multi-fidelity optimization framework was constructed in this research paper. In our approach, the low-fidelity modules and especially the equivalent-plate methodology structural representation, capable of drastically reducing the associated computational time, form the backbone of the optimization framework and a MIDACO optimizer is tasked with providing an initial optimized design. The higher fidelity modules are then employed to explore possible further gains in performance. The developed framework was applied to a benchmark airliner wing. As demonstrated, reasonable mass reduction was obtained for a current state of the art configuration.

2016 ◽  
Vol 33 (4) ◽  
pp. 1095-1113 ◽  
Author(s):  
Slawomir Koziel ◽  
Adrian Bekasiewicz

Purpose – The purpose of this paper is to investigate strategies for expedited dimension scaling of electromagnetic (EM)-simulated microwave and antenna structures, exploiting the concept of variable-fidelity inverse surrogate modeling. Design/methodology/approach – A fast inverse surrogate modeling technique is described for dimension scaling of microwave and antenna structures. The model is established using reference designs obtained for cheap underlying low-fidelity model and corrected to allow structure scaling at high accuracy level. Numerical and experimental case studies are provided demonstrating feasibility of the proposed approach. Findings – It is possible, by appropriate combination of surrogate modeling techniques, to establish an inverse model for explicit determination of geometry dimensions of the structure at hand so as to re-design it for various operating frequencies. The scaling process can be concluded at a low computational cost corresponding to just a few evaluations of the high-fidelity computational model of the structure. Research limitations/implications – The present study is a step toward development of procedures for rapid dimension scaling of microwave and antenna structures at high-fidelity EM-simulation accuracy. Originality/value – The proposed modeling framework proved useful for fast geometry scaling of microwave and antenna structures, which is very laborious when using conventional methods. To the authors’ knowledge, this is one of the first attempts to surrogate-assisted dimension scaling of microwave components at the EM-simulation level.


Author(s):  
P. Perdikaris ◽  
M. Raissi ◽  
A. Damianou ◽  
N. D. Lawrence ◽  
G. E. Karniadakis

Multi-fidelity modelling enables accurate inference of quantities of interest by synergistically combining realizations of low-cost/low-fidelity models with a small set of high-fidelity observations. This is particularly effective when the low- and high-fidelity models exhibit strong correlations, and can lead to significant computational gains over approaches that solely rely on high-fidelity models. However, in many cases of practical interest, low-fidelity models can only be well correlated to their high-fidelity counterparts for a specific range of input parameters, and potentially return wrong trends and erroneous predictions if probed outside of their validity regime. Here we put forth a probabilistic framework based on Gaussian process regression and nonlinear autoregressive schemes that is capable of learning complex nonlinear and space-dependent cross-correlations between models of variable fidelity, and can effectively safeguard against low-fidelity models that provide wrong trends. This introduces a new class of multi-fidelity information fusion algorithms that provide a fundamental extension to the existing linear autoregressive methodologies, while still maintaining the same algorithmic complexity and overall computational cost. The performance of the proposed methods is tested in several benchmark problems involving both synthetic and real multi-fidelity datasets from computational fluid dynamics simulations.


Author(s):  
Wei Zhang ◽  
Saad Ahmed ◽  
Jonathan Hong ◽  
Zoubeida Ounaies ◽  
Mary Frecker

Different types of active materials have been used to actuate origami-inspired self-folding structures. To model the highly nonlinear deformation and material responses, as well as the coupled field equations and boundary conditions of such structures, high-fidelity models such as finite element (FE) models are needed but usually computationally expensive, which makes optimization intractable. In this paper, a computationally efficient two-stage optimization framework is developed as a systematic method for the multi-objective designs of such multifield self-folding structures where the deformations are concentrated in crease-like areas, active and passive materials are assumed to behave linearly, and low- and high-fidelity models of the structures can be developed. In Stage 1, low-fidelity models are used to determine the topology of the structure. At the end of Stage 1, a distance measure [Formula: see text] is applied as the metric to determine the best design, which then serves as the baseline design in Stage 2. In Stage 2, designs are further optimized from the baseline design with greatly reduced computing time compared to a full FEA-based topology optimization. The design framework is first described in a general formulation. To demonstrate its efficacy, this framework is implemented in two case studies, namely, a three-finger soft gripper actuated using a PVDF-based terpolymer, and a 3D multifield example actuated using both the terpolymer and a magneto-active elastomer, where the key steps are elaborated in detail, including the variable filter, metrics to select the best design, determination of design domains, and material conversion methods from low- to high-fidelity models. In this paper, analytical models and rigid body dynamic models are developed as the low-fidelity models for the terpolymer- and MAE-based actuations, respectively, and the FE model of the MAE-based actuation is generalized from previous work. Additional generalizable techniques to further reduce the computational cost are elaborated. As a result, designs with better overall performance than the baseline design were achieved at the end of Stage 2 with computing times of 15 days for the gripper and 9 days for the multifield example, which would rather be over 3 and 2 months for full FEA-based optimizations, respectively. Tradeoffs between the competing design objectives were achieved. In both case studies, the efficacy and computational efficiency of the two-stage optimization framework are successfully demonstrated.


Author(s):  
Marco Baldan ◽  
Alexander Nikanorov ◽  
Bernard Nacke

Purpose Reliable modeling of induction hardening requires a multi-physical approach, which makes it time-consuming. In designing an induction hardening system, combining such model with an optimization technique allows managing a high number of design variables. However, this could lead to a tremendous overall computational cost. This paper aims to reduce the computational time of an optimal design problem by making use of multi-fidelity modeling and parallel computing. Design/methodology/approach In the multi-fidelity framework, the “high-fidelity” model couples the electromagnetic, thermal and metallurgical fields. It predicts the phase transformations during both the heating and cooling stages. The “low-fidelity” model is instead limited to the heating step. Its inaccuracy is counterbalanced by its cheapness, which makes it suitable for exploring the design space in optimization. Then, the use of co-Kriging allows merging information from different fidelity models and predicting good design candidates. Field evaluations of both models occur in parallel. Findings In the design of an induction heating system, the synergy between the “high-fidelity” and “low-fidelity” model, together with use of surrogates and parallel computing could reduce up to one order of magnitude the overall computational cost. Practical implications On one hand, multi-physical modeling of induction hardening implies a better understanding of the process, resulting in further potential process improvements. On the other hand, the optimization technique could be applied to many other computationally intensive real-life problems. Originality/value This paper highlights how parallel multi-fidelity optimization could be used in designing an induction hardening system.


Author(s):  
Matthew A. Williams ◽  
Andrew G. Alleyne

In the early stages of control system development, designers often require multiple iterations for purposes of validating control designs in simulation. This has the potential to make high fidelity models undesirable due to increased computational complexity and time required for simulation. As a solution, lower fidelity or simplified models are used for initial designs before controllers are tested on higher fidelity models. In the event that unmodeled dynamics cause the controller to fail when applied on a higher fidelity model, an iterative approach involving designing and validating a controller’s performance may be required. In this paper, a switched-fidelity modeling formulation for closed loop dynamical systems is proposed to reduce computational effort while maintaining elevated accuracy levels of system outputs and control inputs. The effects on computational effort and accuracy are investigated by applying the formulation to a traditional vapor compression system with high and low fidelity models of the evaporator and condenser. This sample case showed the ability of the switched fidelity framework to closely match the outputs and inputs of the high fidelity model while decreasing computational cost by 32% from the high fidelity model. For contrast, the low fidelity model decreases computational cost by 48% relative to the high fidelity model.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Shi-Liang Wu ◽  
Cui-Xia Li

The finite difference method discretization of Helmholtz equations usually leads to the large spare linear systems. Since the coefficient matrix is frequently indefinite, it is difficult to solve iteratively. In this paper, a modified symmetric successive overrelaxation (MSSOR) preconditioning strategy is constructed based on the coefficient matrix and employed to speed up the convergence rate of iterative methods. The idea is to increase the values of diagonal elements of the coefficient matrix to obtain better preconditioners for the original linear systems. Compared with SSOR preconditioner, MSSOR preconditioner has no additional computational cost to improve the convergence rate of iterative methods. Numerical results demonstrate that this method can reduce both the number of iterations and the computational time significantly with low cost for construction and implementation of preconditioners.


2012 ◽  
Vol 544 ◽  
pp. 49-54 ◽  
Author(s):  
Jun Zheng ◽  
Hao Bo Qiu ◽  
Xiao Lin Zhang

ATC provides a systematic approach in solving decomposed large scale systems that has solvable subsystems. However, complex engineering system usually has a high computational cost , which result in limiting real-life applications of ATC based on high-fidelity simulation models. To address these problems, this paper aims to develop an efficient approximation model building techniques under the analytical target cascading (ATC) framework, to reduce computational cost associated with multidisciplinary design optimization problems based on high-fidelity simulations. An approximation model building techniques is proposed: approximations in the subsystem level are based on variable-fidelity modeling (interaction of low- and high-fidelity models). The variable-fidelity modeling consists of computationally efficient simplified models (low-fidelity) and expensive detailed (high-fidelity) models. The effectiveness of the method for modeling under the ATC framework using variable-fidelity models is studied. Overall results show the methods introduced in this paper provide an effective way of improving computational efficiency of the ATC method based on variable-fidelity simulation models.


2018 ◽  
Vol 35 (7) ◽  
pp. 2514-2542
Author(s):  
Andrew Thelen ◽  
Leifur Leifsson ◽  
Anupam Sharma ◽  
Slawomir Koziel

Purpose Dual-rotor wind turbines (DRWTs) are a novel type of wind turbines that can capture more power than their single-rotor counterparts. Because their surrounding flow fields are complex, evaluating a DRWT design requires accurate predictive simulations, which incur high computational costs. Currently, there does not exist a design optimization framework for DRWTs. Since the design optimization of DRWTs requires numerous model evaluations, the purpose of this paper is to identify computationally efficient design approaches. Design/methodology/approach Several algorithms are compared for the design optimization of DRWTs. The algorithms vary widely in approaches and include a direct derivative-free method, as well as three surrogate-based optimization methods, two approximation-based approaches and one variable-fidelity approach with coarse discretization low-fidelity models. Findings The proposed variable-fidelity method required significantly lower computational cost than the derivative-free and approximation-based methods. Large computational savings come from using the time-consuming high-fidelity simulations sparingly and performing the majority of the design space search using the fast variable-fidelity models. Originality/value Due the complex simulations and the large number of designable parameters, the design of DRWTs require the use of numerical optimization algorithms. This work presents a novel and efficient design optimization framework for DRWTs using computationally intensive simulations and variable-fidelity optimization techniques.


2017 ◽  
Vol 11 (10) ◽  
pp. 123 ◽  
Author(s):  
Prashank Kansal ◽  
Pramod Kasturi ◽  
Nam H. Kim ◽  
Seung-gyo Jang

MEMS acceleration switches have been used in many engineering applications. In this paper, the reliability of MEMS switch is evaluated under various uncertainties from materials and manufacturing process. First, the performance of MEMS switch is modeled using 1D mass-spring-damper-contact system. Different from conventional lumped element methods, the model includes the effect of geometric parameters as well as contact conditions. The parameters of 1D models are calibrated using a high-fidelity finite element model. For reliability assessment, four different methods are used in order to compare computational cost as well as accuracy in predicting reliability. It turned out that sensitivity-based reliability method has several benefits, such as computational time and identifying important parameters that contribute significantly to reliability. The sensitivity analysis showed that the cross-sectional height and the length of folded-beam contribute most significantly to the reliability of switch-on condition. After changing the length of the beam, the probability of failure was improved from 0.168 to 0.0003.


2019 ◽  
Vol 37 (2) ◽  
pp. 753-788
Author(s):  
Slawomir Koziel ◽  
Adrian Bekasiewicz

Purpose The purpose of this paper is to investigate the strategies and algorithms for expedited design optimization of microwave and antenna structures in multi-objective setup. Design/methodology/approach Formulation of the multi-objective design problem-oriented toward execution of the population-based metaheuristic algorithm within the segmented search space is investigated. Described algorithmic framework exploits variable fidelity modeling, physics- and approximation-based representation of the structure and model correction techniques. The considered approach is suitable for handling various problems pertinent to the design of microwave and antenna structures. Numerical case studies are provided demonstrating the feasibility of the segmentation-based framework for the design of real-world structures in setups with two and three objectives. Findings Formulation of appropriate design problem enables identification of the search space region containing Pareto front, which can be further divided into a set of compartments characterized by small combined volume. Approximation model of each segment can be constructed using a small number of training samples and then optimized, at a negligible computational cost, using population-based metaheuristics. Introduction of segmentation mechanism to multi-objective design framework is important to facilitate low-cost optimization of many-parameter structures represented by numerically expensive computational models. Further reduction of the design cost can be achieved by enforcing equal-volumes of the search space segments. Research limitations/implications The study summarizes recent advances in low-cost multi-objective design of microwave and antenna structures. The investigated techniques exceed capabilities of conventional design approaches involving direct evaluation of physics-based models for determination of trade-offs between the design objectives, particularly in terms of reliability and reduction of the computational cost. Studies on the scalability of segmentation mechanism indicate that computational benefits of the approach decrease with the number of search space segments. Originality/value The proposed design framework proved useful for the rapid multi-objective design of microwave and antenna structures characterized by complex and multi-parameter topologies, which is extremely challenging when using conventional methods driven by population-based metaheuristics algorithms. To the authors knowledge, this is the first work that summarizes segmentation-based approaches to multi-objective optimization of microwave and antenna components.


Sign in / Sign up

Export Citation Format

Share Document