scholarly journals Effect of 3-Phenyllactic Acid and 3-Phenyllactic Acid-Producing Lactic Acid Bacteria on the Characteristics of Alfalfa Silage

Agriculture ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 10 ◽  
Author(s):  
Zhe Wu ◽  
Shengyang Xu ◽  
Ying Yun ◽  
Tingting Jia ◽  
Zhu Yu

In this study, an experiment was performed to evaluate the effect of lactic acid bacteria and 3-phenyllactic acid (PLA) on the fermentation quality and chemical composition of alfalfa silage. Several PLA-tolerant strains were screened from silages and identified. The selected strains (1 × 106 colony forming units/g fresh alfalfa) and PLA (1.0, 2.0, or 3.0 g/kg) were applied to alfalfa before ensiling. After 45 days of storage, the silages were unsealed and subjected to component analysis. Biochemical methods and 16S rDNA gene sequencing were used for the identification of the two strains as Lactobacillus plantarum. The characteristics of chemical and fermentation compounds indicated that PLA and the two strains efficiently improved the quality of the alfalfa silage. It can be concluded that the use of the strains and PLA can significantly improve the quality of silage.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chao Peng ◽  
Wentao Sun ◽  
Xiang Dong ◽  
Lili Zhao ◽  
Jun Hao

AbstractThe study aimed to isolate and identify lactic acid bacteria (LAB) from silages and their application to improve the fermentation quality of alfalfa. Forty-nine LAB strains were isolated from silages, and two strains were screened for growth and acid production rates. Then two strains were selected for Physiological and morphological tests and 16S rRNA sequencing. They were Gram-positive and Catalase-negative and were able to grow at pH 3.5 and at 45 °C, were unable to grow different NaCl concentrations as 3.0% and 6.5%. Strain BDy3-10 was identified as Lactobacillus rhamnosus, while TSy1-3 was identified as L. buchneri. The selected strains were evaluated on fermentation of alfalfa silage. The highest crude protein content occurred in the BDy3-10 treatment group. The contents of neutral detergent fiber and acid detergent fiber in the TSy1-3 treatment were significantly lower than other treatment (P < 0.05). Compared to the control treatment, inoculation treatments deceased pH during ensiling (P < 0.001) and provided the most increased lactic acid content after ensiling for 10 days (P < 0.001). The acetic acid contents of all the inoculation groups were significantly increased (P < 0.001) during ensiling, and were lower than that of control group (P < 0.001). So, the TSy1-3 treatment most effectively improved the fermentation quality of alfalfa silage in warm and humid climate area.


2021 ◽  
Author(s):  
chao Peng ◽  
Wentao Sun ◽  
Xiang Dong ◽  
Lili Zhao ◽  
Jun Hao

Abstract The study aimed to isolate and identify lactic acid bacteria (LAB) from silages and their application to improve the fermentation quality of alfalfa. Forty-nine LAB strains were isolated from silages, and two strains were screened for growth and acid production rates. Then two strains were selected for Physiological and morphological tests and 16S rRNA sequencing. They were Gram-positive and catalase-negative and were able to grow at pH 3.5 and at 45°C, were unable to grow different NaCl concentrations 3, 6.5%. Strain BDy3-10 was identified as Lactobacillus rhamnosus, while TSy1-3 was identified as L. buchneri. The selected strains were evaluated on fermentation of alfalfa silage. The highest CP content occurred in the BDy3-10 treatment group. The contents of NDF and ADF in the TSy1-3 treatment were significantly lower than other treatment (P < 0.05). Compared to the control treatment, inoculation treatments deceased pH during ensiling (P < 0.001) and provided the most increased LA content after ensiling for 10 days (P < 0.001). The AA contents of all the inoculation groups were significantly increased (P < 0.001) during ensiling, and were lower than that of control group (P < 0.001). So, the TSy1-3 treatment most effectively improved the fermentation quality of alfalfa silage in warm and humid climate area.


2017 ◽  
Vol 37 (2) ◽  
pp. 140-144 ◽  
Author(s):  
Srisesharam Srigopalram ◽  
◽  
Palaniselvam Kuppusamy ◽  
Soundharrajan Ilavenil ◽  
Hyung-Su Park ◽  
...  

2017 ◽  
Vol 63 (3) ◽  
pp. 141-149 ◽  
Author(s):  
Gulfam Ali ◽  
Qinhua Liu ◽  
Xianjung Yuan ◽  
Zihao Dong ◽  
Seare T. Desta ◽  
...  

2012 ◽  
Vol 524-527 ◽  
pp. 2167-2171
Author(s):  
Ting Ting Ning ◽  
Chun Cheng Xu ◽  
Hui Li Wang ◽  
Wei Hao ◽  
Heng Lei

This experiment was conducted to determine the ensiling characteristics and microbial changes of fodder ramie silage treated without additive (Control), or with molasses (M), lactic acid bacteria (LAB), and mixtures of lactic acid bacteria and molasses (LABM). Triplicate samples were randomly opened on days 0, 3, 7, 14, 28 and 60 of ensiling for sampling and the contents were processed for quality assessment and laboratory analysis. Compared with control silage, addition of M and LABM decreased pH and butyric acid while increasing lactic acid during ensiling (P < 0.05). For the LAB treatment, the pH value declined slowly at initial days then kept relatively stable at about 5.39 and the concentration of lactic acid increased for the first 7 days then maintained stable until day 60. The control silage showed a rise in pH and a significant decline in lactic acid concentration at later stage. Microbial changes had similar trend during ensiling for all the treatments where the lactic acid bacteria increased at initial days then showed a decline at later stage. Furthermore, LAB treatment had the highest (P<0.05) lactic acid bacteria population at almost all ensiling periods. It was concluded that both M and LABM treatment can improve the fermentation quality of fodder ramie silage to some extent, but the effects of adding lactic acid bacteria still need further research.


2015 ◽  
Vol 35 (2) ◽  
pp. 159-165 ◽  
Author(s):  
Ki Choon Choi ◽  
Soundarrajan Ilavenil ◽  
Mariadhas Valan Arasu ◽  
Hyung-Su Park ◽  
Won-Ho Kim

Sign in / Sign up

Export Citation Format

Share Document