scholarly journals Incidence of Escherichia coli in Vegetable Crops and Soil Profile Drip Irrigated with Primarily Treated Municipal Wastewater in a Semi-Arid Peri Urban Area

Agriculture ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 291
Author(s):  
Deepak Singh ◽  
Neelam Patel ◽  
Agossou Gadedjisso-Tossou ◽  
Sridhar Patra ◽  
Nisha Singh ◽  
...  

This study investigates the incidence of Escherichia coli in cauliflower, bitter gourd and soil profile drip-irrigated with municipal wastewater in a semi-arid peri-urban area in India. There were four treatments: drip irrigation with primarily treated municipal wastewater through inline (non-pressure compensating) surface drip (T1), inline subsurface drip (T2), bioline (pressure compensating) subsurface drip (T3) and bioline surface drip (T4). Results revealed that T1 had the highest concentration of E.coli (35 ± 2.66 and 25 ± 2.26 colony forming unit (CFU) g˗1) and T3 had the lowest concentration of E. coli (29 ± 2.29 and 18.9 ± 2.04 CFU g˗1) for cauliflower and bitter gourd, respectively. In bitter gourd top fruits (1 m above the ground level), the E. coli count was significantly lower (p < 0.05) than in the surface level fruits. There was also a considerable reduction of E. coli counts in bioline drip lateral as compared to the inline drip. A higher concentration of E. coli (470 ± 70.5 and 410 ± 36.9 CFU g˗1 soil) was also found in the top soil (0–0.15 m) in T1 treatment, while the minimum (154 ± 13.86 and 95 ± 14.25 CFU g˗1) was observed in T3. Hence, bioline drip lateral may be a better option for wastewater irrigation as compared to inline drip to reduce microbial contamination of crop and soil.

2005 ◽  
Vol 68 (5) ◽  
pp. 900-905 ◽  
Author(s):  
CAROLINE CÔTÉ ◽  
SYLVAIN QUESSY

Liquid hog manure is routinely applied to farm land as a crop fertilizer. However, this practice raises food safety concerns, especially when manure is used on fruit and vegetable crops. The objectives of this project were to evaluate the persistence of Escherichia coli and Salmonella in surface soil after application of liquid hog manure to fields where pickling cucumbers were grown and to verify the microbiological quality of harvested cucumbers. Mineral fertilizers were replaced by liquid hog manure at various ratios in the production of pickling cucumbers in a 3-year field study. The experimental design was a randomized complete block comprising four replicates in sandy loam (years 1, 2, and 3) and loamy sand (year 3). Soil samples were taken at a depth of 20 cm every 2 weeks after June application of organic and inorganic fertilizers. Vegetable samples were also taken at harvest time. Liquid hog manure, soil, and vegetable (washed and unwashed) samples were analyzed for the presence of Salmonella and E. coli. An exponential decrease of E. coli populations was observed in surface soil after the application of manure. The estimated average time required to reach undetectable concentrations of E. coli in sandy loam varied from 56 to 70 days, whereas the absence of E. coli was estimated at 77 days in loamy sand. The maximal Salmonella persistence in soil was 54 days. E. coli and Salmonella were not detected in any vegetable samples.


2005 ◽  
Vol 51 (6) ◽  
pp. 501-505 ◽  
Author(s):  
Thomas A Edge ◽  
Stephen Hill

Antibiotic resistance was examined in 462 Escherichia coli isolates from surface waters and fecal pollution sources around Hamilton, Ontario. Escherichia coli were resistant to the highest concentrations of each of the 14 antibiotics studied, although the prevalence of high resistance was mostly low. Two of 12 E. coli isolates from sewage in a CSO tank had multiple resistance to ampicillin, ciprofloxacin, gentamicin, and tetracycline above their clinical breakpoints. Antibiotic resistance was less prevalent in E. coli from bird feces than from municipal wastewater sources. A discriminant function calculated from antibiotic resistance data provided an average rate of correct classification of 68% for discriminating E. coli from bird and wastewater fecal pollution sources. The preliminary microbial source tracking results suggest that, at times, bird feces might be a more prominent contributor of E. coli to Bayfront Park beach waters than municipal wastewater sources.Key words: antibiotic resistance, Escherichia coli, surface water, fecal pollution.


2004 ◽  
Vol 50 (2) ◽  
pp. 61-68 ◽  
Author(s):  
C. Choi ◽  
I. Song ◽  
S. Stine ◽  
J. Pimentel ◽  
C. Gerba

Two different irrigation systems, subsurface drip irrigation and furrow irrigation, are tested to investigate the level of viral contamination and survival when tertiary effluent is used in arid and semi-arid regions. The effluent was injected with bacteriophages of PRD1 and MS2. A greater number of PRD1 and MS2 were recovered from the lettuce in the subsurface drip-irrigated plots as compared to those in the furrow-irrigated plots. Shallow drip tape installation and preferential water paths through cracks on the soil surface appeared to be the main causes of high viral contamination in subsurface drip irrigation plots, which led to the direct contact of the lettuce stems with the irrigation water which penetrated the soil surface. The water use efficiency of the subsurface drip irrigation system was higher than that of the furrow irrigation system. Thus, subsurface drip irrigation is an efficient irrigation method for vegetable crops in arid and semi-arid regions if viral contamination can be reduced. Deeper installation of drip tapes, frequent irrigations, and timely harvests based on cumulative heat units may further reduce health risks by ensuring viral die-off under various field conditions.


2019 ◽  
Vol 100 ◽  
pp. 00061 ◽  
Author(s):  
Adriana Osińska ◽  
Ewa Korzeniewska ◽  
Monika Harnisz ◽  
Sebastian Niestępski ◽  
Piotr Jachimowicz

Wastewater treatment plants (WWTPs) are major reservoirs of antibiotic-resistant bacteria (ARB) which are transported to the natural environment with discharged effluents. Samples of untreated wastewater (UWW) and treated wastewater (TWW) from four municipal WWTPs and samples of river water collected upstream (URW) and downstream (DRW) from the effluent discharge point were analyzed in the study. The total counts of bacteria resistant to β-lactams and tetracyclines and the counts of antibiotic-resistant Escherichia coli were determined. Antibiotic-resistant bacteria, including antibiotic-resistant E. coli, were removed with up to 99.9% efficiency in the evaluated WWTPs. Despite the above, ARB counts in TWW samples were high at up to 1.25x105 CFU/mL in winter and 1.25x103 CFU/mL in summer. Antibiotic-resistant bacteria were also abundant (up to 103 CFU/ml) in URW and DRW samples collected in winter and summer. In both UWW and TWW samples, the counts of ARB and antibiotic-resistant E. coli were at least one order of magnitude lower in summer than in winter. The study revealed that despite the high efficiency of bacterial removal in the wastewater treatment processes, considerable amounts of ARB are released into the environment with TWW and that the percentage of ARB in total bacterial counts increases after wastewater treatment.


2013 ◽  
Vol 11 (4) ◽  
pp. 600-612 ◽  
Author(s):  
Aneta Luczkiewicz ◽  
Ewa Felis ◽  
Aleksandra Ziembinska ◽  
Anna Gnida ◽  
Ewa Kotlarska ◽  
...  

In this study, the susceptibility to erythromycin (E) and to trimethoprim/sulfamethoxazole (SXT) among isolates of Enterococcus spp. and Escherichia coli was tested, respectively. Both fecal indicators were detected and isolated from raw (RW) and treated wastewater (TW) as well as from samples of activated sludge (AS) collected in a local wastewater treatment plant (WWTP). Biodiversity of bacterial community in AS was also monitored using polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE). Additionally, distribution of sul1–3 genes conferring sulfonamide resistance was tested among SXT-resistant E. coli. Simultaneously, basic physicochemical parameters and concentrations of eight antimicrobial compounds (belonging to folate pathway inhibitors and macrolides class) were analyzed in RW and TW samples. Six of the selected antimicrobial agents, namely: erythromycin, clarithromycin, trimethoprim, roxithromycin, sulfamethoxazole, and N-acetyl-sulfamethoxazole were detected in the wastewater samples. Bacterial biodiversity of AS samples were comparable with no relevant differences. Among tested Enterococcus spp., E-resistant isolates constituted 41%. SXT resistance was less prevalent in E. coli with 11% of isolates. The genes conferring resistance to sulfonamides (sul1–3) were detected in SXT-resistant E. coli of wastewater origin with similar frequencies as in other environmental compartments, including clinical ones.


2016 ◽  
Vol 82 (18) ◽  
pp. 5505-5518 ◽  
Author(s):  
Shuai Zhi ◽  
Graham Banting ◽  
Qiaozhi Li ◽  
Thomas A. Edge ◽  
Edward Topp ◽  
...  

ABSTRACTEscherichia colihas been proposed to have two habitats—the intestines of mammals/birds and the nonhost environment. Our goal was to assess whether certain strains ofE. colihave evolved toward adaptation and survival in wastewater. Raw sewage samples from different treatment plants were subjected to chlorine stress, and ∼59% of the survivingE. colistrains were found to contain a genetic insertion element (IS30) located within theuspC-flhDCintergenic region. The positional location of the IS30element was not observed across a library of 845E. coliisolates collected from various animal hosts or within GenBank or whole-genome reference databases for human and animalE. coliisolates (n= 1,177). Phylogenetics clustered the IS30element-containing wastewaterE. coliisolates into a distinct clade, and biomarker analysis revealed that these wastewater isolates contained a single nucleotide polymorphism (SNP) biomarker pattern that was specific for wastewater. These isolates belonged to phylogroup A, possessed generalized stress response (RpoS) activity, and carried the locus of heat resistance, features likely relevant to nonhost environmental survival. Isolates were screened for 28 virulence genes but carried only thefimHmarker. Our data suggest that wastewater contains a naturalized resident population ofE. coli. We developed an endpoint PCR targeting the IS30element within theuspC-flhDCintergenic region, and all raw sewage samples (n= 21) were positive for this marker. Conversely, the prevalence of this marker inE. coli-positive surface and groundwater samples was low (≤5%). This simple PCR assay may represent a convenient microbial source-tracking tool for identification of water samples affected by municipal wastewater.IMPORTANCEThe results of this study demonstrate that some strains ofE. coliappear to have evolved to become naturalized populations in the wastewater environment and possess a number of stress-related genetic elements likely important for survival in this nonhost environment. The presence of non-host-adapted strains in wastewater challenges our understanding of usingE. colias a microbial indicator of wastewater treatment performance, suggesting that theE. colistrains present in human and animal feces may be very different from those found in treated wastewater.


Antibiotics ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1111
Author(s):  
Gabriela Gregova ◽  
Vladimir Kmet ◽  
Tatiana Szaboova

Antibiotic resistance of the indicator microorganism Escherichia coli was investigated in isolates from samples collected during the course of one year from two wastewater treatment plants treating municipal and animal wastes in Slovakia, respectively. The genes of antibiotic resistance and virulence factors in selected resistant E. coli isolates were described. A high percentage of the isolates from municipal and animal wastewater were resistant to ampicillin, streptomycin, tetracycline, ceftiofur, ceftriaxone, and enrofloxacin. In the selected E. coli isolates, we detected the following phenotypes: ESBL (20.4% in animal wastewater; 7.7% in municipal wastewater), multidrug-resistant (17% of animal and 32% of municipal isolates), high resistance to quinolones (25% of animal and 48% of municipal samples), and CTX-M (7.9% of animal and 17.3% of municipal isolates). We confirmed an integro-mediated antibiotic resistance in 13 E. coli strains from municipal and animal wastewater samples, of which the Tn3 gene and virulence genes cvaC, iutA, iss, ibeA, kps, and papC were detected in six isolates. One of the strains of pathogenic E. coli from the animal wastewater contained genes ibeA with papC, iss, kpsII, Int1, Tn3, and Cit. In addition, one blaIMP gene was found in the municipal wastewater sample. This emphasises the importance of using the appropriate treatment methods to reduce the counts of antibiotic-resistant microorganisms in wastewater effluent.


2021 ◽  
Vol 12 ◽  
Author(s):  
Harvey N. Summerlin ◽  
Cícero C. Pola ◽  
Eric S. McLamore ◽  
Terry Gentry ◽  
Raghupathy Karthikeyan ◽  
...  

High demand for food and water encourages the exploration of new water reuse programs, including treated municipal wastewater usage. However, these sources could contain high contaminant levels posing risks to public health. The objective of this study was to grow and irrigate a leafy green (romaine lettuce) with treated wastewater from a municipal wastewater treatment plant to track Escherichia coli and antibiotic-resistant microorganisms through cultivation and post-harvest storage to assess their fate and prevalence. Contamination levels found in the foliage, leachate, and soil were directly (p &lt; 0.05) related to E. coli concentrations in the irrigation water. Wastewater concentrations from 177 to 423 CFU ml−1 resulted in 15–25% retention in the foliage. Leachate and soil presented means of 231 and 116% retention, respectively. E. coli accumulation on the foliage was observed (p &lt; 0.05) and increased by over 400% during 14-day storage (4°C). From randomly selected E. coli colonies, in all four biomass types, 81 and 34% showed resistance to ampicillin and cephalothin, respectively. Reclaimed wastewater usage for leafy greens cultivation could pose potential health risks, especially considering the bacteria found have a high probability of being antibiotic resistance. Successful reuse of wastewater in agriculture will depend on appropriate mitigation and management strategies to guarantee an inexpensive, efficient, and safe water supply.


Sign in / Sign up

Export Citation Format

Share Document