scholarly journals Control of Meloidogyne graminicola a Root-Knot Nematode Using Rice Plants as Trap Crops: Preliminary Results

Agriculture ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 37
Author(s):  
Stefano Sacchi ◽  
Giulia Torrini ◽  
Leonardo Marianelli ◽  
Giuseppe Mazza ◽  
Annachiara Fumagalli ◽  
...  

Meloidogyne graminicola is one of the most harmful organisms in rice cultivation throughout the world. This pest was detected for the first time in mainland Europe (Northern Italy) in 2016 and was subsequently added to the EPPO Alert List. To date, few methods are available for the control of M. graminicola and new solutions are required. In 2019, field trials using rice plants as trap crops were performed in a Lombardy region rice field where five plots for three different management approaches were staked out: (i) Uncultivated; (ii) Treated: three separate cycles of rice production where plants were sown and destroyed each time at the second leaf stage; (iii) Control: rice was sown and left to grow until the end of the three cycles in treated plots. The results showed that in the treated plots, the nematode density and the root gall index were lower than for the other two management approaches. Moreover, the plant population density and rice plant growth were higher than the uncultivated and control plots. In conclusion, the use of the trap crop technique for the control of M. graminicola gave good results and thus it could be a new phytosanitary measure to control this pest in rice crop areas.

Author(s):  
Katherine East ◽  
Inga Zasada ◽  
R. Paul Schreiner ◽  
Michelle Marie Moyer

Vineyard replanting in Washington state can be negatively impacted by the plant-parasitic nematode Meloidogyne hapla. Chemically-focused nematode management programs do not offer long-term suppression, however, this may be achieved through the adoption of cultural approaches such as rootstocks and irrigation. Nematode-resistant rootstocks are used extensively in other regions, but many have not been tested against M. hapla. Vineyards in eastern Washington are irrigated, so manipulating available soil water may also impact nematode development. In 2017, two field trials were established in eastern Washington to evaluate the effects of: 1) late-summer water limitation on M. hapla population development, and 2) host status of 1103 Paulsen, 3309 Couderc and Matador rootstocks for M. hapla. The efficacy of these cultural management approaches was evaluated under three initial M. hapla densities (0, 50, and 250 M. hapla J2 per 250 g soil) in both trials. Reducing irrigation to manage M. hapla infestation of grape roots was ineffective and may cause harm to the vines by inducing too much water stress. Conversely, rootstocks effectively reduced population densities of M. hapla. Overall, rootstocks show the most promise as a cultural tool to manage M. hapla during the establishment phase in Washington vineyards.


Nematology ◽  
2013 ◽  
Vol 15 (4) ◽  
pp. 469-482 ◽  
Author(s):  
Jagadeesh Patil ◽  
Stephen J. Powers ◽  
Keith G. Davies ◽  
Hari S. Gaur ◽  
Anthony J. Miller

Three experiments were conducted to compare the attraction and repulsion of second-stage juveniles (J2) of the root-knot nematode, Meloidogyne graminicola, to rice plants supplied with different forms of nitrogen. The rice plants were hydroponically grown in a full nutrient solution containing different concentrations (0.1 or 10.0 mM) of nitrate (NO3−) or forms of nitrogen supply (2.85 mM calcium nitrate (Ca(NO3)2), ammonium nitrate (NH4NO3) or ammonium chloride (NH4Cl)) for 2 weeks. Five rice plants were placed with their roots in one corner of a Perspex X or Y-chamber partly filled with agar and J2 were inoculated onto the chambers. The data show that J2 of M. graminicola were significantly attracted towards the roots of rice plants grown in hydroponics containing 0.1 mM NO3− and 2.85 mM Ca(NO3)2, but repelled by 10.0 mM NO3−, 2.85 mM NH4NO3 and NH4Cl. The results suggest that the application of ammonia-based nitrogen fertiliser to the rice nursery bed may interfere with nematode attraction and thus reduce invasion, and the application of chemical nitrification inhibitors to rice nursery beds may decrease nematode invasion.


Author(s):  
D. Sharma-Poudyal ◽  
R.R. Pokharel ◽  
S.M. Shrestha ◽  
G.B. Khatri-Chhetri

A field survey was carried out to discover the population of M. graminicola in diseased and healthy looking rice plants and its impact on yield and yield attributing characters of rice during 2000 in Chitwan, Nepal. Root and soil samples were collected from ten upland rice fields. Modified Baermann Tray Method was used to extract the juveniles (J2) from soil and root samples. The survey revealed that the diseased root samples had the highest Meloidogyne graminicola J2 population. However, the nematode population in root and soil and root knot intensities did not differ significantly between diseases and healthy looking plants. Diseased rice plants had lower number of total and effective tillers, filled grains per panicle and grain yield. Yield reduction in diseased plants was 40.5% as compared to healthy plants in the variety 'Masuli' M. graminicola, even if a new pathogen, seems to be already established in sandy loam to loamy sand soil and reducing rice yield considerably in Nepal. J. Inst. Agric. Anim. Sci. 23:9-14.


1970 ◽  
Vol 9 ◽  
pp. 21-27 ◽  
Author(s):  
Nabin Kumar Dangal ◽  
D. Sharma Poudyal ◽  
S. M. Shrestha ◽  
C. Adhikari ◽  
J. M. Duxbury ◽  
...  

Pot experiment was conducted during July-September 2006 to evaluate some organic amendments such as sesame (Sesamum indicum) biomass, buckwheat (Fagopyrum esculentum) biomass, neem (Azadirachta indica) leaves, chinaberry (Melia azedarch) leaves and chicken manure @ 1, 2 and 3 t ha-1 each against the rice root-knot nematode (Meloidogyne graminicola Golden & Birchfield) in direct seeded rice. The treatments were replicated five times in a randomized complete block design. The number of second stage juveniles (J2) of M. graminicola was significantly low in chicken manure @ 3 t ha-1. The root knot severity index was significantly low in sesame @ 3 t ha-1, chinaberry @ 3, 2 or 1 t ha-1, neem @ 3 t ha-1 and chicken manure @ 2 or 3 t ha-1 amended soil but root lesion severity index was lower only in chicken manure @ 2 t ha-1 treated plots. The fresh shoot weight and length were significantly high in chicken manure amendment @ 2 or 3 t ha-1 at 45th day after seeding. However, the fresh root weight, length, number of leaves and number of J2 recovered from the roots were non-significant. Key words: biomass; juveniles; Meloidogyne graminicola; root-knot severity index; root lesion severity index DOI: 10.3126/njst.v9i0.3160 Nepal Journal of Science and Technology 9 (2008) 21-27


2020 ◽  
Vol 113 (4) ◽  
pp. 1864-1871
Author(s):  
S Sherbrooke ◽  
Y Carrière ◽  
J C Palumbo

Abstract Trap cropping, in which a trap crop is planted near a cash crop, has been used successfully for reducing pest damage in some agricultural systems. We used a meta-analysis of extensive data on two trap cropping systems, diamondback moth, Plutella xylostella (Linnaeus), exploiting cabbage and Chilo partellus (Swinhoe) (Lepidoptera: Crambidae) exploiting maize, to show that oviposition preference for, and high larval mortality on trap crops are important indicators of effectiveness of trap cropping systems. We then evaluated Indian mustard (Brassica juncea var. juncea L. Czern.) (Capparidales: Brassicaceae) and yellow rocket (Barbarea vulgaris W. T. Aiton) (Brassicales: Brassicaceae) as trap crops for protecting broccoli (Brassica oleracea var. italica Plenck) (Capparidales: Brassicaceae) against diamondback moth in Yuma, AZ, using planting configurations compatible with current practices for commercial production and without use of insecticides. In oviposition choice tests, both yellow rocket and Indian mustard were highly preferred over broccoli in the field. Furthermore, the number of larvae and pupae was significantly lower on yellow rocket and Indian mustard compared to broccoli, indicating relatively high mortality on these trap crops. Nevertheless, during the fall and spring growing seasons, no significant differences in the number of individuals on broccoli or proportion of broccoli crowns infested at harvest occurred between plots with trap crops relative to plots exclusively planted to broccoli. Thus, with the plant density and planting patterns used and without use of insecticides, there was no evidence that trap cropping was effective for reducing diamondback moth infestation of broccoli.


Sign in / Sign up

Export Citation Format

Share Document