scholarly journals Use of Vermicompost from Sugar Beet Pulp in Cultivation of Peas (Pisum sativum L.)

Agriculture ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 919
Author(s):  
Grzegorz Pączka ◽  
Anna Mazur-Pączka ◽  
Mariola Garczyńska ◽  
Edmund Hajduk ◽  
Joanna Kostecka ◽  
...  

A properly conducted vermicomposting process is an environmentally friendly technology used to transform selected organic waste into vermicompost. This organic fertilizer is increasingly used in agriculture and horticulture as an alternative to mineral fertilizers. Research has investigated the use of vermicompost made from the waste mass of sugar beet pulp as a soil additive in the cultivation of peas (Pisum sativum L.). Experimentally, five treatments consisted of: a heavy clay soil as control (SL); the same soil with 10, 25, and 50% substitution of vermicompost, (V10, V25, and V50, respectively); and a standard peat-based horticulture substrate (GS) for comparison. Analyzed pea characteristics and the content of macro and microelements in their biomass were most favorably influenced by 25 and 50% vermicompost addition, and the values obtained were similar to those in the GS treatment. The lowest values of analyzed traits for P. sativum were found in the SL group. Thus, appropriate addition of vermicompost in the construction of plant growing substrates can reduce the use of inorganic fertilizers and be an alternative to peat in the medium, contributing to reduced use of this valuable environmental resource.

Processes ◽  
2020 ◽  
Vol 8 (11) ◽  
pp. 1402
Author(s):  
Andrzej Baryga ◽  
Bożenna Połeć ◽  
Andrzej Klasa

Management of digestate from production of biogas has a great environmental importance. One of feedstock for biogas generation is beet pulp, a side product of sugar beet processing plant. In the paper a closed loop of beet pulp utilization at sugar beet plantation is presented. Effects of soil application of digestate obtained from digestion of sugar beet pulp were compared with standard mineral fertilizers. The field experiment was performed in three successive growing seasons. The studies were concentrated on quality of sugar beets grown under effects of two fertilization treatments—soil application of digestate cv. standard mineral fertilizers. It was found that some important quality indices (weight of single sugar beet root, content of sucrose in root tissues) were higher for beet harvested from digestate treatment compared to standard mineral fertilization (control). The concentration of harmful component (amide nitrogen) in sugar beets grown under conditions of digestate soil application was lower than in the control. It can be concluded that soil application of digestate from processing of sugar beet pulp can be treated as environmentally sound and effective method of its management.


2017 ◽  
Vol 63 (No. 5) ◽  
pp. 207-212 ◽  
Author(s):  
Baryga Andrzej ◽  
Połeć Bożenna ◽  
Małczak Ewelina

The purpose of the work was to study the suitability of residue obtained during the methane fermentation process of sugar beet pulp for agricultural use in sugar beet plantations. Studies were performed with the sugar beet pulp fermentation residue and sugar beets (Beta vulgaris cv. Fighter) harvested from experimental plots. It was found that the by-product of sugar beet pulp digestion may be utilized in agriculture taking into account its chemical and microbiological standards. The nutrients in digestion residue were as assimilable for sugar beet plants as the nutrients in mineral fertilizers. The evaluation of technological parameters of sugar beet harvested from experimental plots based on standard technological criteria showed that irrespective of fertilization treatment, the raw material obtained met most of the requirements and can be used as a stock material for sugar production.


Author(s):  
S.V. Meshcheryakov ◽  
◽  
I.S. Eremin ◽  
D.O. Sidorenko ◽  
M.S. Kotelev ◽  
...  
Keyword(s):  

2016 ◽  
pp. 565-570
Author(s):  
Huang Qin ◽  
Zhu Si-ming ◽  
Zeng Di ◽  
Yu Shu-juan

Sugar beet pulp (SBP) was used as low value adsorbent for the removal of calcium from hard water. Batch experiments were conducted to determine the factors affecting adsorption of the process such as pH value and Ca concentration. The adsorption equilibrium of Ca2+ by the SBP is reached after 100min and a pseudo second-order kinetic model can describe the adsorption process. The initial concentrations of Ca varied from 927 to 1127mgCa2+/L. A dose of 30g/L sugar beet pulp was sufficient for the optimum removal of calcium. The overall uptake of Ca ions by sugar beet pulp has its maximum at pH=8. The adsorption equilibrium data fitted well with the Langmuir adsorption isotherm equation.


2012 ◽  
pp. 756-761 ◽  
Author(s):  
Miroslav Hutnan ◽  
Štefan Tóth ◽  
Igor Bodík ◽  
Nina Kolesárová ◽  
Michal Lazor ◽  
...  

The possibility of joint treatment of spent sugar beet pulp and wastewater from a sugar factory was studied in this work. Works focused on processing of spent sugar beet pulp separately or together with other substrates can be found in the literature. In the case of some sugar factories, which have spare capacity in the anaerobic reactor on an anaerobic-aerobic wastewater treatment plant, joint processing of spent sugar beet pulp and wastewater from the sugar factory might be an interesting option. The results of the operation of a pilot plant of an anaerobic reactor with a capacity of 3.5 m3 are discussed. Operation of the pilot plant confirmed the possibility of cofermentation of these materials. The organic loading rate achieved in the anaerobic reactor was higher than 6 kg/(m3·d) (COD), while more than half of the load was provided by spent sugar beet pulp. The addition of sugar beet pulp decreased the concentration of ammonia nitrogen in the anaerobic reactor and it was even necessary to add nitrogen. However, the nitrogen content in sludge water depends on the C:N ratio in the processed sugar beet pulp, therefore this knowledge cannot be generalized. About 1.5 to 2-fold biogas production can be expected from the cofermentation of wastewater with sugar beet pulp in an anaerobic reactor, compared with the biogas production from just wastewater treatment.


Biofuels ◽  
2021 ◽  
pp. 1-8
Author(s):  
Saida Ibragić ◽  
Narcisa Smječanin ◽  
Ranko Milušić ◽  
Mirza Nuhanović

2021 ◽  
Vol 13 (9) ◽  
pp. 5317
Author(s):  
Sonja Simić ◽  
Jovana Petrović ◽  
Dušan Rakić ◽  
Biljana Pajin ◽  
Ivana Lončarević ◽  
...  

Sugar beet pulp (SBP) is a by-product of the sugar industry in which the dietary fiber content ranges from 73% to 80%. Compared to cereal fibers mainly used in biscuit production, sugar beet fibers are gluten free and have a perfect ratio of 2/3 insoluble fiber. In this work, sugar beet pulp was extruded with corn grits (ratios of corn grits to sugar beet pulp in extrudates were 85:15, 70:30, and 55:45), and the obtained sugar beet pulp extrudates (SBPEs) were used for improving the nutritional quality of cookies. The wheat flour in cookies was replaced with SBPEs in the amount of 5, 10, and 15%. The influence of three factors (the percentage of sugar beet pulp in the SBPEs, the size of the SBPE particles, and the percentage of wheat flour substituted with SBPEs) and their interactions on the nutritional quality of cookies, as well as their physical and sensory characteristics are examined using the Box–Behnken experimental design. The addition of extruded sugar beet pulp (SBPEs) significantly increased the amount of total dietary fiber and mineral matter of cookies. On the whole, the addition of SBPEs increased cookie hardness, but the hardness decreased with an increase in extrudate particle size. Sensory characteristics (except for the taste) were the most influenced by extrudate particle size.


Sign in / Sign up

Export Citation Format

Share Document