scholarly journals MasPA: A Machine Learning Application to Predict Risk of Mastitis in Cattle from AMS Sensor Data

2021 ◽  
Vol 3 (3) ◽  
pp. 575-584
Author(s):  
Naeem Abdul Ghafoor ◽  
Beata Sitkowska

Mastitis is a common disease that prevails in cattle owing mainly to environmental pathogens; they are also the most expensive disease for cattle in dairy farms. Several prevention and treatment methods are available, although most of these options are quite expensive, especially for small farms. In this study, we utilized a dataset of 6600 cattle along with several of their sensory parameters (collected via inexpensive sensors) and their prevalence to mastitis. Supervised machine learning approaches were deployed to determine the most effective parameters that could be utilized to predict the risk of mastitis in cattle. To achieve this goal, 26 classification models were built, among which the best performing model (the highest accuracy in the shortest time) was selected. Hyper parameter tuning and K-fold cross validation were applied to further boost the top model’s performance, while at the same time avoiding bias and overfitting of the model. The model was then utilized to build a GUI application that could be used online as a web application. The application can predict the risk of mastitis in cattle from the inhale and exhale limits of their udder and their temperature with an accuracy of 98.1% and sensitivity and specificity of 99.4% and 98.8%, respectively. The full potential of this application can be utilized via the standalone version, which can be easily integrated into an automatic milking system to detect the risk of mastitis in real time.

Author(s):  
Ghanashyama Prabhu ◽  
Noel E. O'Connor ◽  
Kieran Moran

Exercise-based cardiac rehabilitation requires patients to perform a set of certain prescribed exercises a specific number of times. Local muscular endurance (LME) exercises are an important part of the rehabilitation program. Automatic exercise recognition and repetition counting, from wearable sensor data is an important technology to enable patients to perform exercises independently in remote settings, e.g. their own home. In this paper we first report on a comparison of traditional approaches to exercise recognition and repetition counting, corresponding to supervised machine learning and peak detection from inertial sensing signals respectively, with more recent machine learning approaches, specifically Convolutional Neural Networks (CNNs). We investigated two different types of CNN: one using the AlexNet architecture, the other using time-series array. We found that the performance of CNN based approaches were better than the traditional approaches. For exercise recognition task, we found that the AlexNet based single CNN model outperformed other methods with an overall 97.18% F1-score measure. For exercise repetition counting , again the AlexNet architecture based single CNN model outperformed other methods by correctly counting repetitions in 90% of the performed exercise sets within an error of ±1. To the best of our knowledge, our approach of using a single CNN method for both recognition and repetition counting is novel. In addition to reporting our findings, we also make the dataset we created, the INSIGHT-LME dataset, publicly available to encourage further research.


2017 ◽  
Author(s):  
Sabrina Jaeger ◽  
Simone Fulle ◽  
Samo Turk

Inspired by natural language processing techniques we here introduce Mol2vec which is an unsupervised machine learning approach to learn vector representations of molecular substructures. Similarly, to the Word2vec models where vectors of closely related words are in close proximity in the vector space, Mol2vec learns vector representations of molecular substructures that are pointing in similar directions for chemically related substructures. Compounds can finally be encoded as vectors by summing up vectors of the individual substructures and, for instance, feed into supervised machine learning approaches to predict compound properties. The underlying substructure vector embeddings are obtained by training an unsupervised machine learning approach on a so-called corpus of compounds that consists of all available chemical matter. The resulting Mol2vec model is pre-trained once, yields dense vector representations and overcomes drawbacks of common compound feature representations such as sparseness and bit collisions. The prediction capabilities are demonstrated on several compound property and bioactivity data sets and compared with results obtained for Morgan fingerprints as reference compound representation. Mol2vec can be easily combined with ProtVec, which employs the same Word2vec concept on protein sequences, resulting in a proteochemometric approach that is alignment independent and can be thus also easily used for proteins with low sequence similarities.


2020 ◽  
pp. 1-21 ◽  
Author(s):  
Clément Dalloux ◽  
Vincent Claveau ◽  
Natalia Grabar ◽  
Lucas Emanuel Silva Oliveira ◽  
Claudia Maria Cabral Moro ◽  
...  

Abstract Automatic detection of negated content is often a prerequisite in information extraction systems in various domains. In the biomedical domain especially, this task is important because negation plays an important role. In this work, two main contributions are proposed. First, we work with languages which have been poorly addressed up to now: Brazilian Portuguese and French. Thus, we developed new corpora for these two languages which have been manually annotated for marking up the negation cues and their scope. Second, we propose automatic methods based on supervised machine learning approaches for the automatic detection of negation marks and of their scopes. The methods show to be robust in both languages (Brazilian Portuguese and French) and in cross-domain (general and biomedical languages) contexts. The approach is also validated on English data from the state of the art: it yields very good results and outperforms other existing approaches. Besides, the application is accessible and usable online. We assume that, through these issues (new annotated corpora, application accessible online, and cross-domain robustness), the reproducibility of the results and the robustness of the NLP applications will be augmented.


2021 ◽  
Vol 35 (1) ◽  
pp. 11-21
Author(s):  
Himani Tyagi ◽  
Rajendra Kumar

IoT is characterized by communication between things (devices) that constantly share data, analyze, and make decisions while connected to the internet. This interconnected architecture is attracting cyber criminals to expose the IoT system to failure. Therefore, it becomes imperative to develop a system that can accurately and automatically detect anomalies and attacks occurring in IoT networks. Therefore, in this paper, an Intrsuion Detection System (IDS) based on extracted novel feature set synthesizing BoT-IoT dataset is developed that can swiftly, accurately and automatically differentiate benign and malicious traffic. Instead of using available feature reduction techniques like PCA that can change the core meaning of variables, a unique feature set consisting of only seven lightweight features is developed that is also IoT specific and attack traffic independent. Also, the results shown in the study demonstrates the effectiveness of fabricated seven features in detecting four wide variety of attacks namely DDoS, DoS, Reconnaissance, and Information Theft. Furthermore, this study also proves the applicability and efficiency of supervised machine learning algorithms (KNN, LR, SVM, MLP, DT, RF) in IoT security. The performance of the proposed system is validated using performance Metrics like accuracy, precision, recall, F-Score and ROC. Though the accuracy of Decision Tree (99.9%) and Randon Forest (99.9%) Classifiers are same but other metrics like training and testing time shows Random Forest comparatively better.


Computers ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 157
Author(s):  
Daniel Santos ◽  
José Saias ◽  
Paulo Quaresma ◽  
Vítor Beires Nogueira

Traffic accidents are one of the most important concerns of the world, since they result in numerous casualties, injuries, and fatalities each year, as well as significant economic losses. There are many factors that are responsible for causing road accidents. If these factors can be better understood and predicted, it might be possible to take measures to mitigate the damages and its severity. The purpose of this work is to identify these factors using accident data from 2016 to 2019 from the district of Setúbal, Portugal. This work aims at developing models that can select a set of influential factors that may be used to classify the severity of an accident, supporting an analysis on the accident data. In addition, this study also proposes a predictive model for future road accidents based on past data. Various machine learning approaches are used to create these models. Supervised machine learning methods such as decision trees (DT), random forests (RF), logistic regression (LR), and naive Bayes (NB) are used, as well as unsupervised machine learning techniques including DBSCAN and hierarchical clustering. Results show that a rule-based model using the C5.0 algorithm is capable of accurately detecting the most relevant factors describing a road accident severity. Further, the results of the predictive model suggests the RF model could be a useful tool for forecasting accident hotspots.


2021 ◽  
Vol 297 ◽  
pp. 01073
Author(s):  
Sabyasachi Pramanik ◽  
K. Martin Sagayam ◽  
Om Prakash Jena

Cancer has been described as a diverse illness with several distinct subtypes that may occur simultaneously. As a result, early detection and forecast of cancer types have graced essentially in cancer fact-finding methods since they may help to improve the clinical treatment of cancer survivors. The significance of categorizing cancer suffers into higher or lower-threat categories has prompted numerous fact-finding associates from the bioscience and genomics field to investigate the utilization of machine learning (ML) algorithms in cancer diagnosis and treatment. Because of this, these methods have been used with the goal of simulating the development and treatment of malignant diseases in humans. Furthermore, the capacity of machine learning techniques to identify important characteristics from complicated datasets demonstrates the significance of these technologies. These technologies include Bayesian networks and artificial neural networks, along with a number of other approaches. Decision Trees and Support Vector Machines which have already been extensively used in cancer research for the creation of predictive models, also lead to accurate decision making. The application of machine learning techniques may undoubtedly enhance our knowledge of cancer development; nevertheless, a sufficient degree of validation is required before these approaches can be considered for use in daily clinical practice. An overview of current machine learning approaches utilized in the simulation of cancer development is presented in this paper. All of the supervised machine learning approaches described here, along with a variety of input characteristics and data samples, are used to build the prediction models. In light of the increasing trend towards the use of machine learning methods in biomedical research, we offer the most current papers that have used these approaches to predict risk of cancer or patient outcomes in order to better understand cancer.


2018 ◽  
Vol 46 (12) ◽  
pp. 2057-2068 ◽  
Author(s):  
Erika Rovini ◽  
Carlo Maremmani ◽  
Alessandra Moschetti ◽  
Dario Esposito ◽  
Filippo Cavallo

Sign in / Sign up

Export Citation Format

Share Document