scholarly journals Plant Performance and Metabolomic Profile of Loquat in Response to Mycorrhizal Inoculation, Armillaria mellea and Their Interaction

Agronomy ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 899
Author(s):  
Amelia Camprubi ◽  
Jimena Solari ◽  
Paolo Bonini ◽  
Francesc Garcia-Figueres ◽  
Fabrizio Colosimo ◽  
...  

A greenhouse experiment was established with loquat plants to investigate the role of arbuscular mycorrhizal fungi (AMF) in the control of the white root rot fungus Armillaria mellea and to determine the changes produced in the plant metabolome. Plants inoculated with two AMF, Rhizoglomus irregulare and a native AMF isolate from loquat soils, were infected with Armillaria. Although mycorrhization failed to control the Armillaria root infection, the increased growth of infected plants following inoculation with the native mycorrhizal isolate suggests an initial tolerance towards Armillaria. Overall, metabolomics allowed highlighting the molecular basis of the improved plant growth in the presence of Armillaria following AMF colonization. In this regard, a wide and diverse metabolic response was involved in the initial tolerance to the pathogen. The AMF-mediated elicitation altered the hormone balance and modulated the production of reactive oxygen species (mainly via the reduction of chlorophyll intermediates), possibly interfering with the reactive oxygen species (ROS) signaling cascade. A complex modulation of fucose, ADP-glucose and UDP-glucose, as well as the down-accumulation of lipids and fatty acids, were observed in Armillaria-infected plants following AMF colonization. Nonetheless, secondary metabolites directly involved in plant defense, such as DIMBOA and conjugated isoflavone phytoalexins, were also involved in the AMF-mediated plant response to infection.

PLoS ONE ◽  
2019 ◽  
Vol 14 (3) ◽  
pp. e0214165 ◽  
Author(s):  
Vanesa Nahirñak ◽  
Máximo Rivarola ◽  
Natalia Inés Almasia ◽  
María Pilar Barrios Barón ◽  
Horacio Esteban Hopp ◽  
...  

2020 ◽  
Vol 6 (2) ◽  
pp. 44 ◽  
Author(s):  
Zhaoyong Shi ◽  
Jiacheng Zhang ◽  
Shichuan Lu ◽  
Yang Li ◽  
Fayuan Wang

Arbuscular mycorrhizal fungi are among the most ubiquitous soil plant-symbiotic fungi in terrestrial environments and can alleviate the toxic effects of various contaminants on plants. As an essential micronutrient for higher plants, molybdenum (Mo) can cause toxic effects at excess levels. However, arbuscular mycorrhizal fungal impacts on plant performance and Mo accumulation under Mo-contamination still require to be explored. We first studied the effects of Claroideoglomus etunicatum BEG168 on plant biomass production and Mo accumulation in a biofuel crop, sweet sorghum, grown in an agricultural soil spiked with different concentrations of MoS2. The results showed that the addition of Mo produced no adverse effects on plant biomass, N and P uptake, and root colonization rate, indicating Mo has no phytotoxicity and fungitoxicity at the test concentrations. The addition of Mo did not increase and even decreased S concentrations in plant tissues. Arbuscular mycorrhizal inoculation significantly enhanced plant biomass production and Mo concentrations in both shoots and roots, resulting in increased Mo uptake by mycorrhizal plants. Overall, arbuscular mycorrhizal inoculation promoted the absorption of P, N and S by sweet sorghum plants, improved photosystem (PS) II photochemical efficiency and comprehensive photosynthesis performance. In conclusion, MoS2 increased Mo accumulation in plant tissues but produced no toxicity, while arbuscular mycorrhizal inoculation could improve plant performance via enhancing nutrient uptake and photochemical efficiency. Sweet sorghum, together with arbuscular mycorrhizal fungi, shows a promising potential for phytoremediation of Mo-contaminated farmland and revegetation of Mo-mine disturbed areas, as well as biomass production on such sites.


2009 ◽  
pp. c3 ◽  
Author(s):  
Helena M. Cochemé ◽  
Michael P. Murphy

2004 ◽  
Vol 71 ◽  
pp. 121-133 ◽  
Author(s):  
Ascan Warnholtz ◽  
Maria Wendt ◽  
Michael August ◽  
Thomas Münzel

Endothelial dysfunction in the setting of cardiovascular risk factors, such as hypercholesterolaemia, hypertension, diabetes mellitus and chronic smoking, as well as in the setting of heart failure, has been shown to be at least partly dependent on the production of reactive oxygen species in endothelial and/or smooth muscle cells and the adventitia, and the subsequent decrease in vascular bioavailability of NO. Superoxide-producing enzymes involved in increased oxidative stress within vascular tissue include NAD(P)H-oxidase, xanthine oxidase and endothelial nitric oxide synthase in an uncoupled state. Recent studies indicate that endothelial dysfunction of peripheral and coronary resistance and conductance vessels represents a strong and independent risk factor for future cardiovascular events. Ways to reduce endothelial dysfunction include risk-factor modification and treatment with substances that have been shown to reduce oxidative stress and, simultaneously, to stimulate endothelial NO production, such as inhibitors of angiotensin-converting enzyme or the statins. In contrast, in conditions where increased production of reactive oxygen species, such as superoxide, in vascular tissue is established, treatment with NO, e.g. via administration of nitroglycerin, results in a rapid development of endothelial dysfunction, which may worsen the prognosis in patients with established coronary artery disease.


2001 ◽  
Vol 120 (5) ◽  
pp. A361-A361
Author(s):  
K UCHIKURA ◽  
T WADA ◽  
Z SUN ◽  
S HOSHINO ◽  
G BULKLEY ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document