scholarly journals Benefits and Trade-Offs of Tillage Management in China: A Meta-Analysis

Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1495
Author(s):  
Yingcheng Wang ◽  
Hao Ying ◽  
Yulong Yin ◽  
Hongye Wang ◽  
Zhenling Cui

In China, deep tillage (DT; to >20 cm soil depth) has increased crop yields by improving soil properties, while no-tillage (NT) has been recommended to reduce the labor and machinery costs. Local farmers are willing to adopted rotary tillage (RT; harrowing to 10–15 cm depth) for easy management. However, the effects of these tillage management methods on agronomic productivity, greenhouse gas (GHG) emissions, soil organic carbon (SOC) sequestration, and economic return have not been quantified systematically, and their effectiveness remains in question. Here, we present a meta-analysis of the effects of these methods using 665 paired measurements from 144 peer-reviewed studies. The results indicated that DT significantly increased crop yields by 7.5% relative to RT, and even greater increases were observed in regions with low temperatures and with a wheat cropping system. In contrast, NT resulted in a yield reduction of 3.7% relative to RT, however, controlling for the appropriate temperature and long extension duration (>15 yr) could reduce yield losses and even increase the yield. Both DT and NT significantly enhanced SOC sequestration relative to RT. Adoption of DT would lead to both higher total GHG emissions (N2O and CH4) and increased energy costs, while NT reduced GHG emissions. DT management exhibited a positive net profit for all cropping systems; NT decreased the net profit for rice and wheat but increased the profit for maize. Our study highlighted the agronomic, environmental, and economic benefits and trade-offs for the different tillage methods and should enable investors and policymakers to ensure the best tillage management decisions are made depending on the location-specific conditions.

2020 ◽  
Author(s):  
Xiaolin Yang ◽  
Tammo Steenhuis ◽  
Kyle Davis ◽  
Wopke van der Werf ◽  
Coen Ritsema ◽  
...  

Abstract Earth’s water resources are critical for supporting livelihoods and food security but are being increasingly overexploited to support global agriculture. Diversifying cropping systems could potentially resolve unsustainable water use but trade-offs with other aspects of sustainability and food security have not yet been assessed. We perform a detailed meta-analysis to systematically compare 31 different crop rotations in China– in terms of actual evapotranspiration (ETa), effect on groundwater depth, grain yield, economic output, and water use efficiency (WUE) – and identify configurations that can achieve co-benefits across multiple dimensions. We find that a combination of lowering the cropping index (i.e., harvest frequency), incorporating fallow periods, and introducing higher value crops into the currently dominant winter wheat-summer maize double cropping system can reduce growing season ETa by as much as 31%, mitigate groundwater decline by 19% or more, and increased economic output and economic WUE by more than 11% and 3%, respectively. We also find that multiple diversified wheat-maize–based rotations– all with rotation lengths greater than two years– achieve co-benefits across all evaluated dimensions. This study provides new empirical evidence of the opportunities for diversified crop rotations to balance the multiple objectives of food production, sustainable groundwater use and farmer profitability. Extending this solution to other water-stressed agricultural regions could be an effective strategy in achieving more sustainable food production globally.


2020 ◽  
Vol 12 (3) ◽  
pp. 1062 ◽  
Author(s):  
Francis Azumah Chimsah ◽  
Liqun Cai ◽  
Jun Wu ◽  
Renzhi Zhang

Sustainable food production has long been a priority for mankind and this is being challenged by limited arable land, challenged landscapes, and higher human population growth. China started conservation farming around the 1950’s. However, main Conservation Tillage (CT) research started in 1992. Using a systematic meta-analysis approach, this review aims at examining China’s approach to CT and to characterize the main outcomes of long-term CT research across northern China. Data from organizations in charge of CT research in China showed an improvement in crop yield of at least 4% under double cropping systems and 6% under single cropping systems in dry areas of northern China. Furthermore, long-term CT practices were reported to have improved soil physical properties (soil structure, bulk density, pore size, and aggregate stability), soil nutrient levels, and reduction in greenhouse gas emission. Other benefits include significant increase in income levels and protection of the environment. Limitations to CT practice highlighted in this study include occasional reduction in crop yields during initial years of cropping, significant reduction in total N of soils, increase in N2O emission, and the need for customized machinery for its implementation. Outcomes of CT practice are ecologically and economically beneficial though its limitations are worth cogitating.


Solid Earth ◽  
2015 ◽  
Vol 6 (3) ◽  
pp. 1087-1101 ◽  
Author(s):  
D. Tsozué ◽  
J. P. Nghonda ◽  
D. L. Mekem

Abstract. The impact of direct-seeding mulch-based cropping systems (DMC), direct seeding (DS) and tillage seeding (TS) on Sorghum yields, soil fertility and the rehabilitation of degraded soils was evaluated in northern Cameroon. Field work consisted of visual examination, soil sampling, yield and rainfall data collection. Three fertilization rates (F1: 100 kg ha−1 NPK + 25 kg ha−1 of urea in DMC, F2: 200 kg ha−1 NPK + 50 kg ha−1 of urea in DMC and F3: 300 kg ha−1 NPK + 100 kg ha−1 of urea in DMC) were applied to each cropping system (DS, TS and DMC), resulting in nine experimental plots. Two types of chemical fertilizer were used (NPK 22.10.15 and urea) and applied each year from 2002 to 2012. Average Sorghum yields were 1239, 863 and 960 kg ha−1 in DMC, DS and TS, respectively, at F1, 1658, 1139 and 1192 kg ha−1 in DMC, DS and TS, respectively, at F2, and 2270, 2138 and 1780 kg ha−1 in DMC, DS and TS, respectively, at F3. pH values were 5.2–5.7 under DMC, 4.9–5.3 under DS and TS and 5.6 in the control sample. High values of cation exchange capacity were recorded in the control sample, TS system and F1 of DMC. Base saturation rates, total nitrogen and organic matter contents were higher in the control sample and DMC than in the other systems. All studied soils were permanently not suitable for Sorghum due to the high percentage of nodules. F1 and F2 of the DS were currently not suitable, while F1 and F3 of DMC, F3 of DS and F1, F2 and F3 of TS were marginally suitable for Sorghum due to low pH values.


2017 ◽  
Vol 5 (4) ◽  
pp. 97
Author(s):  
Badiori Ouattara ◽  
Idriss Sermé ◽  
Korodjouma Ouattara ◽  
Michel P Sédogo ◽  
Hassan Bismark Nacro

Labile pools of soil organic matter (SOM), including soil sugars, are important to the formation and stabilization of soil aggregates and to microbial activity and nutrient cycling. The effects of cropping systems at farm level in tropical areas on SOM labile pool dynamics have not been adequately studied and the results are sparse and inconsistent. The objective of this study was to determine the effects of soil management intensity on soil sugar monomers derived from plant debris or microbial activity in cotton (Gossypium herbaceum)-based cropping systems of western Burkina Faso. Thirty-three (33) plots were sampled at 0-15 cm soil depth considering field-fallow successions and tillage intensity. Two pentose (arabinose, xylose) and four hexose (glucose, galactose, mannose, glucosamine) monomers accounted for 2 to 18% of soil organic carbon (SOC) content. Total sugar content was significantly less with tillage, especially for the hexose monomeric sugars glucose and mannose, the latter of microbial origin. Soil mannose was 63 and 80% less after 10 years of cultivation, without and with annual ploughing respectively, compared with fallow conditions. Soil monosaccharide content was rapidly restored with fallow and soon approached the equilibrium level observed under old fallow lands. Therefore, the soil monosaccharides, in particular galactose and mannose from microbial synthesis are early indicators of changes in SOC.


2019 ◽  
Vol 17 (1-2) ◽  
pp. 14-30
Author(s):  
M Jahangir Alam ◽  
S Ahmed ◽  
MK Islam ◽  
R Islam ◽  
M Islam

Cropping systems of Bangladesh are highly diverse and cultivation costs of puddled transplanted rice (PTR) are high. Therefore, an improved system is needed to address the issues, a field experiment was conducted during 2011-2013 to evaluate system intensification with varying degrees of cropping systems and residue retention. Four cropping systems (CSE) namely CSE1: T. boro rice-T. aman rice (control), CSE2: wheat-mungbean-T. aman rice (wheat and mungbean sown using a power tiller-operated seeder (PTOS) with full tillage in a single pass; puddled transplanted aman), CSE3: wheat-mungbean-dry seeded DS aman rice (DSR), and CSE4: wheat-mungbean-DS aman rice (all sown by PTOS with strip tillage) were compared. Two levels of aman rice residue retention (removed; partial retention i.e. 40 cm of standing stubble) were compared in sub plots. Grain yield was significantly higher (by 11%) when wheat was grown after DSR than PTR. Similarly, PTR and DSR (aman rice) produced statistically similar crop yields. Rice residue retention resulted a significantly higher (by 10%) wheat yield and a slightly increased (by 6%) mungbean yield than that of residues removed. The system productivity of CSE4 was significantly higher (by 10%) than CSE1 when averaged of the two years data. Partial aman residue retention gave significantly higher system yield than residue removal (by 0.6 t ha-1). After two years, no effect of CSE or partial aman residue retention was found on soil physical property (bulk density) of the top soil. Therefore, CSE4 along with residue retention would be more effective for sustainable crop production. The Agriculturists 2019; 17(1-2) 14-30


2020 ◽  
Vol 6 (45) ◽  
pp. eaba1715 ◽  
Author(s):  
Giovanni Tamburini ◽  
Riccardo Bommarco ◽  
Thomas Cherico Wanger ◽  
Claire Kremen ◽  
Marcel G. A. van der Heijden ◽  
...  

Enhancing biodiversity in cropping systems is suggested to promote ecosystem services, thereby reducing dependency on agronomic inputs while maintaining high crop yields. We assess the impact of several diversification practices in cropping systems on above- and belowground biodiversity and ecosystem services by reviewing 98 meta-analyses and performing a second-order meta-analysis based on 5160 original studies comprising 41,946 comparisons between diversified and simplified practices. Overall, diversification enhances biodiversity, pollination, pest control, nutrient cycling, soil fertility, and water regulation without compromising crop yields. Practices targeting aboveground biodiversity boosted pest control and water regulation, while those targeting belowground biodiversity enhanced nutrient cycling, soil fertility, and water regulation. Most often, diversification practices resulted in win-win support of services and crop yields. Variability in responses and occurrence of trade-offs highlight the context dependency of outcomes. Widespread adoption of diversification practices shows promise to contribute to biodiversity conservation and food security from local to global scales.


2017 ◽  
Vol 9 (9) ◽  
pp. 210 ◽  
Author(s):  
M. A. Quddus ◽  
M. J. Abedin Mian ◽  
H. M. Naser ◽  
M. A. Hossain ◽  
S. Sultana

The experiment was conducted to measure crop yields, nutrient concentration, nutrient uptake and balance by using different nutrient management practices for mustard-mungbean-T. aman rice cropping system in calcareous soil of Madaripur, Bangladesh. Different nutrient management practices were absolute nutrient control (T1); farmer’s practice (T2); AEZ based nutrient application (T3) and soil test based nutrient application (T4). The practices were compared in a randomized completely block design with three replications over two consecutive years. The average yield through application of soil test based nutrient (T4) was showed effective to get highest yields of mustard (1530 kg ha-1), mungbean (1632 kg ha-1) and T. aman rice (4729 kg ha-1). The same practices (T4) exhibited the greatest nutrients uptake by the test crops. The apparent balance of N and K was negative; however it was less negative and less deficiency detect in T4 treatment. Positive balance of P observed in all practices except in T1. There was a positive S balance (7.60 kg ha-1) in T4 but negative in T1, T2 and T3. Zinc balance was found positive in T3 and T4 and negative in T1 and T2. Boron balance in the system was neutral or slightly positive in T1 and negative in T2 but positive in T3 and T4. Organic matter, N, P, S, Zn and B status in soil was improved by T4 treatment. The results suggested that the soil test based nutrient application is viable and sustainable for mustard-mungbean-T. aman rice cropping system in calcareous soils of Bangladesh.


2014 ◽  
Vol 9 (4) ◽  
pp. 475-483 ◽  
Author(s):  
Vincent Kodjo Avornyo ◽  
◽  
Osamu Ito ◽  
Gordana Kranjac-Berisavljevic ◽  
Osamu Saito ◽  
...  

Despite the growing demand for rice in Ghana, domestic rice production remains low, resulting in the importation of about 70% of the rice consumed in Ghana. In spite of the fact that 39-47% of the 20-28% of Ghana’s total geographic area classified as inland valley wetlands is considered suitable for rice cultivation, less than 15% is presently being used. A household survey was therefore conducted in six communities, Fihini (F), Cheshegu (C), Dabogushei (D), Kpalgum (K), Zergua (Z), and Yoggu (Y), of the Tolon district in northern Ghana in order to identify factors affecting the introduction of rice into the cropping system. Maize, groundnut, rice, and yam were found to be the four major crops grown in the communities. Overall, 64% of respondents cultivate rice, but this figure is particularly low (30%) in F and Y communities. Rice is usually combined with two other major crops, most frequently maize and yam. In C, D, and K communities, about 90% of households cultivate at least, three out of the four major crops. The interview with farmers revealed that rice yield is 0.73 t/ha on average and significantly higher in K and C (1.06 t/ha and 0.93 t/ha, respectively) than in D (0.37 t/ha). The average distance from compound houses to rice and maize fields is significantly shorter in C, D, and K. Similarly, the rate of rice introduction in C, D, and K is higher than in F, Z, and Y, suggesting that distance to inland valleys may be one of the factors that influence the incorporation of rice into the cropping systems of these communities. Principal component analysis of crop yields and cattle number for the Y community revealed that rice growers tend to have higher crop productivity while cattle production is higher among non-rice growers. Within the community, the productivity of upland crops and balance between crop production and cattle production may be important factors that influence the incorporation of rice into the cropping system.


2011 ◽  
Vol 48 (2) ◽  
pp. 159-175 ◽  
Author(s):  
J. KIHARA ◽  
A. BATIONO ◽  
B. WASWA ◽  
J. M. KIMETU ◽  
B. VANLAUWE ◽  
...  

SUMMARYReduced tillage is said to be one of the potential ways to reverse land degradation and ultimately increase the productivity of degrading soils of Africa. We hypothesised that crop yield following a modest application of 2 t ha−1 of crop residue in a reduced tillage system is similar to the yield obtained from a conventional tillage system, and that incorporation of legumes in a cropping system leads to greater economic benefits as opposed to a cropping system involving continuous maize. Three cropping systems (continuous maize monocropping, legume/maize intercropping and rotation) under different tillage and residue management systems were tested in sub-humid western Kenya over 10 seasons. While soybean performed equally well in both tillage systems throughout, maize yield was lower in reduced than conventional tillage during the first five seasons but no significant differences were observed after season 6. Likewise, with crop residue application, yields in conventional and reduced tillage systems are comparable after season 6. Nitrogen and phosphorus increased yield by up to 100% compared with control. Gross margins were not significantly different among the cropping systems being only 6 to 39% more in the legume–cereal systems relative to similar treatments in continuous cereal monocropping system. After 10 seasons of reduced tillage production, the economic benefits for our cropping systems are still not attractive for a switch from the conventional to reduced tillage.


Author(s):  
Evangelia STEFANOPOULOU ◽  
Ioannis ROUSSIS ◽  
Konstantinos TSIMPOUKAS ◽  
Stella KARIDOGIANNI ◽  
Ioanna KAKABOUKI ◽  
...  

Nigella sativa L. is considered to be an alternative crop offering innovative and high-quality products. A case study was implemented on an existing farm to determine the prospects of N. sativa production in Greece and to assess the economic outcomes of the cultivation of this crop under organic and conventional cropping systems. The total production cost of organic N. sativa seeds was 6.09 €/kg, while the cost of conventional seeds was 4.77 €/kg. The organic and conventional N. sativa seed selling prices were 17.04 and 12.01 €/kg, respectively. Moreover, the financial performance of farm is better after the introduction of N. sativa crop under organic cropping system, where the net profit increased by 63.8% compared to the initial profit of the farm, while the increase in the conventional was less at 49.2%. N


Sign in / Sign up

Export Citation Format

Share Document