scholarly journals Daisychain: Search and Interactive Visualisation of Homologs in Genome Assemblies

Agronomy ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2587
Author(s):  
Oliver Schliebs ◽  
Chon-Kit Kenneth Chan ◽  
Philipp E. Bayer ◽  
Jakob Petereit ◽  
Ajit Singh ◽  
...  

Daisychain is an interactive graph visualisation and search tool for custom-built gene homology databases. The main goal of Daisychain is to allow researchers working with specific genes to identify homologs in other annotation releases. The gene-centric representation includes local gene neighborhood to distinguish orthologs and paralogs by local synteny. The software supports genome sequences in FASTA format and GFF3 formatted annotation files, and the process of building the homology database requires a minimum amount of user interaction. Daisychain includes an integrated web viewer that can be used for both data analysis and data publishing. The web interface extends KnetMaps.js and is based on JavaScript.

2019 ◽  
Author(s):  
Andreas Bremges ◽  
Adrian Fritz ◽  
Alice C. McHardy

The number of microbial genome sequences is growing exponentially, also thanks to recent advances in recovering complete or near-complete genomes from metagenomes and single cells. Assigning reliable taxon labels to genomes is key and often a prerequisite for downstream analyses. We introduce CAMITAX, a scalable and reproducible workflow for the taxonomic labelling of microbial genomes recovered from isolates, single cells, and metagenomes. CAMI-TAX combines genome distance-, 16S rRNA gene-, and gene homology-based taxonomic assignments with phylogenetic placement. It uses Nextflow to orchestrate reference databases and software containers, and thus combines ease of installation and use with computational re-producibility. We evaluated the method on several hundred metagenome-assembled genomes with high-quality taxonomic annotations from the TARA Oceans project, and show that the ensemble classification method in CAMITAX improved on all individual methods across tested ranks. While we initially developed CAMITAX to aid the Critical Assessment of Metagenome Interpretation (CAMI) initiative, it evolved into a comprehensive software to reliably assign taxon labels to microbial genomes. CAMITAX is available under the Apache License 2.0 at: https://github.com/CAMI-challenge/CAMITAX


2017 ◽  
Vol 46 (D1) ◽  
pp. D762-D769 ◽  
Author(s):  
Jonathan Casper ◽  
Ann S Zweig ◽  
Chris Villarreal ◽  
Cath Tyner ◽  
Matthew L Speir ◽  
...  

Abstract The UCSC Genome Browser (https://genome.ucsc.edu) provides a web interface for exploring annotated genome assemblies. The assemblies and annotation tracks are updated on an ongoing basis—12 assemblies and more than 28 tracks were added in the past year. Two recent additions are a display of CRISPR/Cas9 guide sequences and an interactive navigator for gene interactions. Other upgrades from the past year include a command-line version of the Variant Annotation Integrator, support for Human Genome Variation Society variant nomenclature input and output, and a revised highlighting tool that now supports multiple simultaneous regions and colors.


2020 ◽  
Vol 9 (28) ◽  
Author(s):  
Giselle S. Cavalcanti ◽  
Jessica Wasserscheid ◽  
Ken Dewar ◽  
Nicholas J. Shikuma

ABSTRACT Here, we report the complete-genome assemblies of biofilm isolates 201A and 204H. They possess six and seven plasmids, respectively, with a size ranging from 44 kb to 159 kb. Genomic comparisons place the two strains into one new species belonging to the genus Leisingera as novel representatives of the Roseobacter group.


mSphere ◽  
2016 ◽  
Vol 1 (5) ◽  
Author(s):  
José F. Muñoz ◽  
Rhys A. Farrer ◽  
Christopher A. Desjardins ◽  
Juan E. Gallo ◽  
Sean Sykes ◽  
...  

ABSTRACT Characterization of genetic differences between lineages of the dimorphic human-pathogenic fungus Paracoccidioides can identify changes linked to important phenotypes and guide the development of new diagnostics and treatments. In this article, we compared genomes of 31 diverse isolates representing the major lineages of Paracoccidioides spp. and completed the first annotated genome sequences for the PS3 and PS4 lineages. We analyzed the population structure and characterized the genetic diversity among the lineages of Paracoccidioides, including a deep split of S1 into two lineages (S1a and S1b), and differentiated S1b, associated with most clinical cases, as the more highly recombining and diverse lineage. In addition, we found patterns of positive selection in surface proteins and secreted enzymes among the lineages, suggesting diversifying mechanisms of pathogenicity and adaptation across this species complex. These genetic differences suggest associations with the geographic range, pathogenicity, and ecological niches of Paracoccidioides lineages. The Paracoccidioides genus includes two species of thermally dimorphic fungi that cause paracoccidioidomycosis, a neglected health-threatening human systemic mycosis endemic to Latin America. To examine the genome evolution and the diversity of Paracoccidioides spp., we conducted whole-genome sequencing of 31 isolates representing the phylogenetic, geographic, and ecological breadth of the genus. These samples included clinical, environmental and laboratory reference strains of the S1, PS2, PS3, and PS4 lineages of P. brasiliensis and also isolates of Paracoccidioides lutzii species. We completed the first annotated genome assemblies for the PS3 and PS4 lineages and found that gene order was highly conserved across the major lineages, with only a few chromosomal rearrangements. Comparing whole-genome assemblies of the major lineages with single-nucleotide polymorphisms (SNPs) predicted from the remaining 26 isolates, we identified a deep split of the S1 lineage into two clades we named S1a and S1b. We found evidence for greater genetic exchange between the S1b lineage and all other lineages; this may reflect the broad geographic range of S1b, which is often sympatric with the remaining, largely geographically isolated lineages. In addition, we found evidence of positive selection for the GP43 and PGA1 antigen genes and genes coding for other secreted proteins and proteases and lineage-specific loss-of-function mutations in cell wall and protease genes; these together may contribute to virulence and host immune response variation among natural isolates of Paracoccidioides spp. These insights into the recent evolutionary events highlight important differences between the lineages that could impact the distribution, pathogenicity, and ecology of Paracoccidioides. IMPORTANCE Characterization of genetic differences between lineages of the dimorphic human-pathogenic fungus Paracoccidioides can identify changes linked to important phenotypes and guide the development of new diagnostics and treatments. In this article, we compared genomes of 31 diverse isolates representing the major lineages of Paracoccidioides spp. and completed the first annotated genome sequences for the PS3 and PS4 lineages. We analyzed the population structure and characterized the genetic diversity among the lineages of Paracoccidioides, including a deep split of S1 into two lineages (S1a and S1b), and differentiated S1b, associated with most clinical cases, as the more highly recombining and diverse lineage. In addition, we found patterns of positive selection in surface proteins and secreted enzymes among the lineages, suggesting diversifying mechanisms of pathogenicity and adaptation across this species complex. These genetic differences suggest associations with the geographic range, pathogenicity, and ecological niches of Paracoccidioides lineages.


2018 ◽  
Vol 6 (7) ◽  
Author(s):  
Abhishek Somani ◽  
Daniel Smith ◽  
Matthew Hegarty ◽  
Narcis Fernandez-Fuentes ◽  
Sreenivas R. Ravella ◽  
...  

ABSTRACT Non- albicans Candida species are growing in prominence in industrial biotechnology due to their ability to utilize hemicellulose. Here, we present the draft genome sequences of an inhibitor-tolerant Candida tropicalis strain (Y6604) and Candida boidinii NCAIM Y01308 T .


2019 ◽  
Vol 8 (35) ◽  
Author(s):  
A. R. Stahlke ◽  
A. Z. Ozsoy ◽  
D. W. Bean ◽  
P. A. Hohenlohe

We announce the complete circularized mitochondrial genome assemblies of Diorhabda carinata and Diorhabda carinulata, beetle species introduced to North America for the biological control of invasive shrubs of the genus Tamarix L. (Tamaricaceae). The assemblies (16,232 and 16,298 bp, respectively) each comprise 13 protein-coding genes, 22 tRNAs, two rRNAs, and a noncoding region.


2017 ◽  
Vol 5 (34) ◽  
Author(s):  
Angelina A. Kislichkina ◽  
Aleksandr G. Bogun ◽  
Lidiya A. Kadnikova ◽  
Nadezhda V. Maiskaya ◽  
Viktor I. Solomentsev ◽  
...  

ABSTRACT We here report the draft genome sequences of 8 Yersinia pestis subsp. microtus bv. caucasica strains isolated from the East Caucasian (previous name, Dagestan) mountain focus (no. 39), representing the most ancient branch of the 0.PE2 phylogroup circulating in populations of common voles (Microtus arvalis).


2000 ◽  
Vol 16 (7) ◽  
pp. 321-323 ◽  
Author(s):  
Valery A Curwen ◽  
Gary W Williams ◽  
Jonathan B.L Bard

Author(s):  
Linda van der Graaf van Bloois ◽  
Jaap A. Wagenaar ◽  
Aldert L. Zomer

AbstractAntimicrobial resistance (AMR) genes in bacteria are often carried on plasmids and these plasmids can transfer AMR genes between bacteria. For molecular epidemiology purposes and risk assessment, it is important to know if the genes are located on highly transferable plasmids or in the more stable chromosomes. However, draft whole genome sequences are fragmented, making it difficult to discriminate plasmid and chromosomal contigs. Current methods that predict plasmid sequences from draft genome sequences rely on single features, like k-mer composition, circularity of the DNA molecule, copy number or sequence identity to plasmid replication genes, all of which have their drawbacks, especially when faced with large single copy plasmids, which often carry resistance genes. With our newly developed prediction tool RFPlasmid, we use a combination of multiple features, including k-mer composition and databases with plasmid and chromosomal marker proteins, to predict if the likely source of a contig is plasmid or chromosomal. The tool RFPlasmid supports models for 17 different bacterial species, including Campylobacter, E. coli, and Salmonella, and has a species agnostic model for metagenomic assemblies or unsupported organisms. RFPlasmid is available both as standalone tool and via web interface.


2020 ◽  
Vol 9 (41) ◽  
Author(s):  
Muzi Jin ◽  
B. Byambajav ◽  
Hongyuan Zheng ◽  
Yufei Chen ◽  
B. Natsagdorj ◽  
...  

ABSTRACT Here, we report the draft genome sequences of two Yersinia pestis bv. Antiqua strains, belonging to the 3.ANT phylogroup, that were isolated in Mongolia and were circulating in marmot populations.


Sign in / Sign up

Export Citation Format

Share Document