scholarly journals The Extended Effect of Top-Dressed Recovered Struvite Fertiliser on Residual Irish Grassland Soil Phosphorus Levels Compared to Commercial Phosphorus Fertiliser

Agronomy ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 8
Author(s):  
Ciarán O’Donnell ◽  
Denise Barnett ◽  
Joe Harrington ◽  
Niamh Power

Phosphorus (P) is an essential growth-limiting nutrient that cannot be synthetically produced. Mineral P fertilisers are typically applied to crops to sustain modern farming practice and food production. These fertilisers are generally derived from finite phosphate ore, for which there is much concern over long-term sustainability. To address these concerns, various technologies have been developed to recover P from municipal wastewater treatment plants. One product recovered from these processes is struvite, which is a precipitate formed of magnesium, ammonium, and phosphate. To analyse the fertilisation value of the recovered struvite, field trials were conducted on perennial ryegrass (Lolium perenne) over three growing seasons, analysing the dry matter yield of recovered struvite fertiliser. The trial was based on a three-crop silage system designed to mimic typical Irish agricultural practice. This research highlights that recovered struvite as a fertiliser provides additional benefits including increasing the soil P levels. The struvite test case produced a statistically significantly increased soil P level from the baseline of Morgan’s extractable P content of 6.4 mg/L to the optimum Morgan’s soil P level of 11.13 mg/L. The findings of this research provide insight into the added benefits of recovered struvite fertiliser as a sustainable renewable P fertiliser.

2006 ◽  
Vol 54 (9) ◽  
pp. 81-86 ◽  
Author(s):  
M. Arakane ◽  
T. Imai ◽  
S. Murakami ◽  
M. Takeuchi ◽  
M. Ukita ◽  
...  

The amount of excess sludge produced in municipal wastewater treatment plants in Japan is increasing every year as the urban population increases. Phosphorus in excess sludge could be a potential phosphorus resource since at present, phosphate rock is being exhausted all over the world. Every year, Japan imports large quantities of phosphorus from abroad but much is discharged as excess sludge. Therefore, the solubilization process, one method of recovering phosphorus from sludge, could be a promising solution. In this study, a subcritical water process, a new technology that solubilizes sludge under subcritical conditions, was applied before the phosphorus in sludge was recovered with the magnesium ammonium phosphate (MAP) process. As a result, the solubilization rate of excess sludge achieved approximately 80% and about 94–97% of the phosphorus could be recovered.


2011 ◽  
Vol 6 (1) ◽  
Author(s):  
A. Iborra-Clar ◽  
J.A. Mendoza-Roca ◽  
A. Bes-Pií ◽  
J.J. Morenilla-Martínez ◽  
I. Bernácer-Bonora ◽  
...  

Rainfall diminution in the last years has entailed water scarcity in plenty of European regions, especially in Mediterranean areas. As a consequence, regional water authorities have enhanced wastewater reclamation and reuse. Thus, the implementation of tertiary treatments has become of paramount importance in the municipal wastewater treatment plants (WWTP) of Valencian Region (Spain). Conventional tertiary treatments consist of a physico-chemical treatment of the secondary effluent followed by sand filtration and UV radiation. However, the addition of coagulants and flocculants sometimes does not contribute significantly in the final water quality. In this work, results of 20-months operation of three WWTP in Valencian Region with different tertiary treatments (two without chemicals addition and another with chemicals addition) are discussed. Besides, experiments with a 2 m3/h pilot plant located in the WWTP Quart-Benager in Valencia were performed in order to evaluate with the same secondary effluent the effect of the chemicals addition on the final water quality. Results showed that the addition of chemicals did not improve the final water quality significantly. These results were observed both comparing the three full scale plants and in the pilot plant operation.


2008 ◽  
Vol 3 (3) ◽  
Author(s):  
O. González-Barceló ◽  
S. González-Martínez

Biological aerated filtration is a viable option for small municipal wastewater treatment plants. A low cost filter media was obtained by triturating volcanic rock. An apparent porosity of 46 % and a specific surface area of 395 m2/m3·d were obtained once the filter was packed by using a grain size of 8.2 mm. The performance of the system, operated as a biological filter, was evaluated under an average organic load of 2.6±0.4 kgCODT/m3·d (6.7±1.1 gCODT/m2·d) without primary and secondary settling. The average CODT decreased from 220 mg/l in the influent to 88 mg/l in the effluent and the CODD was decreased from 148 mg/l in the influent to 50 mg/l in the effluent. The filter media, in combination with the biofilm, allowed a 75 % TSS removal. The ammonia nitrogen decreased from 51 mg/l in the influent to 33 mg/l in the effluent. The maximum flux coefficients of 9.3gCODdissolved/m2·d and 2.9gNH4-N/m2·d at the biofilm surface were used to simulate, with the Michaelis-Menten model, the profiles of dissolved COD, ammonium and nitrates through the aerated filter. It was possible to conclude that the backwashing procedure removed the excess biomass and was responsible for a homogeneous distribution of heterotrophic and autotrophic microorganisms along the filter depth.


2003 ◽  
Vol 3 (5-6) ◽  
pp. 321-327 ◽  
Author(s):  
M. Gallenkemper ◽  
T. Wintgens ◽  
T. Melin

Endocrine disrupting compounds can affect the hormone system in organisms. A wide range of endocrine disrupters were found in sewage and effluents of municipal wastewater treatment plants. Toxicological evaluations indicate that conventional wastewater treatment plants are not able to remove these substances sufficiently before disposing effluent into the environment. Membrane technology, which is proving to be an effective barrier to these substances, is the subject of this research. Nanofiltration provides high quality permeates in water and wastewater treatment. Eleven different nanofiltration membranes were tested in the laboratory set-up. The observed retention for nonylphenol (NP) and bisphenol A (BPA) ranged between 70% and 100%. The contact angle is an indicator for the hydrophobicity of a membrane, whose influence on the permeability and retention of NP was evident. The retention of BPA was found to be inversely proportional to the membrane permeability.


1982 ◽  
Vol 14 (1-2) ◽  
pp. 121-133
Author(s):  
C Forsberg ◽  
B Hawerman ◽  
B Hultman

Experience from advanced municipal wastewater treatment plants and recovery of polluted waters are described for the last ten years in Sweden. Except in municipalities with large recipients, the urban population is served by treatment plants with combined biological and chemical treatment. Most of these plants are post-precipitation plants. Several modified operational modes have been developed in order to improve the removal efficiencies of pollutants and to reduce the costs. Results are presented on the recovery of specially investigated lakes with a lowered supply of total phosphorus and organic matter.


Author(s):  
Giuseppe Campo ◽  
Alberto Cerutti ◽  
Claudio Lastella ◽  
Aldo Leo ◽  
Deborah Panepinto ◽  
...  

The management of sewage sludge originated from municipal wastewater treatment plants (WWTPs) is an urgent issue. In 2019, the local authority of the Piemonte region started a survey with the aim of collecting recent data concerning wastewater and sludge management in the WWTPs located in its own territory. The survey’s results revealed that 60% of the sludge (51,000 t, as dry substance, d.s.) produced by the local WWTPs was recovered or disposed of outside of the region, and a similar amount of sludge was recovered in agriculture directly or after composting. The increase in the costs to accommodate sewage sludge in recovery or disposal plants, followed to a recent Italian Sentence (27958/2017), and the more and more stringent requirements fixed by lots of European countries for the application of sludge in agriculture, are pushing the Piemonte region authority to re-organize its own network for sludge management, with solutions based onto proximity and diversification. Whether the provisions of the current German legislation are applied in the future also in Italy, approx. 90% of sewage sludge produced into the Piemonte region should be incinerated, with a subsequent step of phosphorous recovery. The new regional plan, according to the Regional Address Deed, should consider a diversification of sludge treatment and recovery practices. On this basis, a need for new plants for around 40,000 t d.s./y could be planned.


Sign in / Sign up

Export Citation Format

Share Document