scholarly journals Role of Arbuscular Mycorrhizal Fungi in the Nitrogen Uptake of Plants: Current Knowledge and Research Gaps

Agronomy ◽  
2015 ◽  
Vol 5 (4) ◽  
pp. 587-612 ◽  
Author(s):  
Heike Bücking ◽  
Arjun Kafle
2021 ◽  
Vol 12 ◽  
Author(s):  
Hassan Etesami ◽  
Byoung Ryong Jeong ◽  
Bernard R. Glick

Phosphorus (P) availability is usually low in soils around the globe. Most soils have a deficiency of available P; if they are not fertilized, they will not be able to satisfy the P requirement of plants. P fertilization is generally recommended to manage soil P deficiency; however, the low efficacy of P fertilizers in acidic and in calcareous soils restricts P availability. Moreover, the overuse of P fertilizers is a cause of significant environmental concerns. However, the use of arbuscular mycorrhizal fungi (AMF), phosphate–solubilizing bacteria (PSB), and the addition of silicon (Si) are effective and economical ways to improve the availability and efficacy of P. In this review the contributions of Si, PSB, and AMF in improving the P availability is discussed. Based on what is known about them, the combined strategy of using Si along with AMF and PSB may be highly useful in improving the P availability and as a result, its uptake by plants compared to using either of them alone. A better understanding how the two microorganism groups and Si interact is crucial to preserving soil fertility and improving the economic and environmental sustainability of crop production in P deficient soils. This review summarizes and discusses the current knowledge concerning the interactions among AMF, PSB, and Si in enhancing P availability and its uptake by plants in sustainable agriculture.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Abeer Hashem ◽  
E. F. Abd_Allah ◽  
A. A. Alqarawi ◽  
A. A. Al-Huqail ◽  
M. A. Shah

The role of soil microbiota in plant stress management, though speculated a lot, is still far from being completely understood. We conducted a greenhouse experiment to examine synergistic impact of plant growth promoting rhizobacterium,Bacillus subtilis(BERA 71), and arbuscular mycorrhizal fungi (AMF) (Claroideoglomus etunicatum;Rhizophagus intraradices; andFunneliformis mosseae) to induce acquired systemic resistance in Talh tree (Acacia gerrardiiBenth.) against adverse impact of salt stress. Compared to the control, the BERA 71 treatment significantly enhanced root colonization intensity by AMF, in both presence and absence of salt. We also found positive synergistic interaction betweenB.subtilisand AMFvis-a-visimprovement in the nutritional value in terms of increase in total lipids, phenols, and fiber content. The AMF and BERA 71 inoculated plants showed increased content of osmoprotectants such as glycine, betaine, and proline, though lipid peroxidation was reduced probably as a mechanism of salt tolerance. Furthermore, the application of bioinoculants to Talh tree turned out to be potentially beneficial in ameliorating the deleterious impact of salinity on plant metabolism, probably by modulating the osmoregulatory system (glycine betaine, proline, and phenols) and antioxidant enzymes system (SOD, CAT, POD, GR, APX, DHAR, MDAHR, and GSNOR).


2018 ◽  
Vol 156 (5) ◽  
pp. 680-688 ◽  
Author(s):  
R. Balestrini ◽  
W. Chitarra ◽  
C. Antoniou ◽  
M. Ruocco ◽  
V. Fotopoulos

AbstractDrought represents one of the major constraints on agricultural productivity and food security and in future is destined to spread widely as a consequence of climate change. Research efforts are focused on developing strategies to make crops more resilient and to mitigate the effects of stress on crop production. In this context, the use of root-associated microbial communities and chemical priming strategies able to improve plant tolerance to abiotic stresses, including drought, have attracted increasing attention in recent years. The current review offers an overview of recent research aimed at verifying the role of arbuscular mycorrhizal fungi and chemical agents to improve plant tolerance to drought and to highlight the mechanisms involved in this improvement. Attention will be devoted mainly to current knowledge on the mechanisms involved in water transport.


Plants ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1468
Author(s):  
Nieves Goicoechea

The association that many crops can establish with the arbuscular mycorrhizal fungi (AMF) present in soils can enhance the resistance of the host plants against several pathogens, including Verticillium spp. The increased resistance of mycorrhizal plants is mainly due to the improved nutritional and water status of crops and to enhanced antioxidant metabolism and/or increased production of secondary metabolites in the plant tissues. However, the effectiveness of AMF in protecting their host plants against Verticillium spp. may vary depending on the environmental factors. Some environmental factors, such as the concentration of carbon dioxide in the atmosphere, the availability of soil water and the air and soil temperatures, are predicted to change drastically by the end of the century. The present paper discusses to what extent the climate change may influence the role of AMF in protecting crops against Verticillium-induced wilt, taking into account the current knowledge about the direct and indirect effects that the changing environment can exert on AMF communities in soils and on the symbiosis between crops and AMF, as well as on the development, incidence and impact of diseases caused by soil-borne pathogens.


Sign in / Sign up

Export Citation Format

Share Document