scholarly journals Characterization and Gene Mapping of non-open hull 1 (noh1) Mutant in Rice (Oryza sativa L.)

Agronomy ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 56 ◽  
Author(s):  
Jun Zhang ◽  
Hao Zheng ◽  
Xiaoqin Zeng ◽  
Hui Zhuang ◽  
Honglei Wang ◽  
...  

Hull opening is a key physiological process during reproductive development, strongly affecting the subsequent fertilization and seed development in rice. In this study, we characterized a rice mutant, non-open hull 1 (noh1), which was derived from ethylmethane-sulfonate (EMS)-treated Xinong 1B (Oryza sativa L.). All the spikelets of noh1 developed elongated and thin lodicules, which caused the failure of hull opening and the cleistogamy. In some spikelets of the noh1, sterile lemmas transformed into hull-like organs. qPCR analysis indicated that the expression of A- and E-function genes was significantly upregulated, while the expression of some B-function genes was downregulated in the lodicules of noh1. In addition, the expression of A-function genes was significantly upregulated, while the expression of some sterile-lemma maker genes was downregulated in the sterile lemma of noh1. These data suggested that the lodicule and sterile lemma in noh1 mutant gained glume-like and lemma-like identity, respectively. Genetic analysis showed that the noh1 trait was controlled by a single recessive gene. The NOH1 gene was mapped between the molecular markers ZJ-9 and ZJ-25 on chromosome 1 with a physical region of 60 kb, which contained nine annotated genes. These results provide a foundation for the cloning and functional research of NOH1 gene.

Genome ◽  
2006 ◽  
Vol 49 (8) ◽  
pp. 1016-1022 ◽  
Author(s):  
Hongfa Luo ◽  
Yunfeng Li ◽  
Zhenglin Yang ◽  
Bingqiang Zhong ◽  
Rong Xie ◽  
...  

A novel floral organ mutant of rice (Oryza sativa L. subsp. indica), termed pistilloid-stamen (ps) here, has flowers with degenerated lemma and palea, with some stamens transformed into pistils and pistil–stamen chimeras. Genetic analysis confirmed that the ps trait is controlled by a single recessive gene. F2 and F3 segregation populations derived from PS ps heterozygote crossed with Oryza sativa subsp. indica 'Luhui-17' (PS PS) were used for molecular mapping of the gene using simple sequence repeat (SSR) markers. With 97 recessive individuals from an F2 segregation population, the ps locus was preliminarily mapped 6.2 cM distal to marker RM6324 and 3.1 cM proximal to marker RM6340 in the terminal region of the short arm of chromosome 1. With a large F3 segregation population, the gene was fine-mapped between markers RM6470 and RM1141, at distances of 0.10 and 0.03 cM to each marker, respectively. The position of the ps gene was finally located within a 20 kb physical region containing 3 annotated putative genes. One of them, encoding a protein with a single C2H2 zinc-finger domain, may be the candidate gene for PS.Key words: rice (Oryza sativa L. subsp. indica), pistilloid-stamen mutant (ps mutant), molecular marker, simple sequence repeat (SSR), gene mapping


2005 ◽  
Vol 55 (2) ◽  
pp. 193-196 ◽  
Author(s):  
Masahiko Maekawa ◽  
Itsuro Takamure ◽  
Nisar Ahmed ◽  
Jyunko Kyozuka

2011 ◽  
Vol 24 (1) ◽  
pp. 33-40
Author(s):  
M. J. Hasan ◽  
M. U. Kulsum ◽  
A. Ansari ◽  
A. K. Paul ◽  
P. L. Biswas

Inheritance of fertility restoration was studied in crosses involving ten elite restorer lines of rice viz. BR6839-41-5-1R, BR7013-62-1-1R, BR7011-37-1-2R, BR10R, BR11R, BR12R, BR13R, BR14R, BR15R and BR16R and one male sterile line Jin23A with WA sources of cytoplasmic male sterility. The segregation pattern for pollen fertility of F2 and BC1 populations of crosses involving Jin23A indicated the presence of two independent dominant fertility restoring genes. The mode of action of the two genes varied in different crosses revealing three types of interaction, i.e. epistasis with dominant gene action, epistasis with recessive gene action, and epistasis with incomplete dominance.DOI: http://dx.doi.org/10.3329/bjpbg.v24i1.16997


2020 ◽  
Author(s):  
dewei yang ◽  
Niqing He ◽  
Xianghua Zheng ◽  
Yanmei Zhen ◽  
Zhenxin Xie ◽  
...  

Abstract Background: Rice is a typical monocotyledonous plant and an important cereal crop. The structural units of rice flowers are spikelets and florets, and floral organ development and spike germination affect rice reproduction and yield.Results: In this study, we identified a novel long sterile lemma (lsl2) mutant from an EMS population. First, we mapped the lsl2 gene between the markers Indel7-22 and Indel7-27, which encompasses a 25-kb region. The rice genome annotation indicated the presence of four candidate genes in this region. Through gene prediction and cDNA sequencing, we confirmed that the target gene in the lsl2 mutant is allelic to LONG STERILE LEMMA1 (G1)/ELONGATED EMPTY GLUME (ELE), hereafter referred to as lsl2. Further analysis of the lsl2 and LSL2 proteins showed a one-amino-acid change, namely, the mutation of serine (Ser) 79 to proline (Pro) in lsl2 compared with LSL2, and this mutation might change the function of the protein. Knockout experiments showed that the lsl2 gene is responsible for the long sterile lemma phenotype. The lsl2 gene might reduce the damage induced by spike germination by decreasing the seed germination rate, but other agronomic traits of rice were not changed in the lsl2 mutant. Taken together, our results demonstrate that the lsl2 gene will have specific application prospects in future rice breeding.Conclusions: The lsl2 gene is responsible for the long sterile lemma phenotype and might reduce the damage induced by spike germination by decreasing the seed germination rate.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Dewei Yang ◽  
Niqing He ◽  
Xianghua Zheng ◽  
Yanmei Zhen ◽  
Zhenxin Xie ◽  
...  

Abstract Background Rice is a typical monocotyledonous plant and an important cereal crop. The structural units of rice flowers are spikelets and florets, and floral organ development and spike germination affect rice reproduction and yield. Results In this study, we identified a novel long sterile lemma (lsl2) mutant from an EMS population. First, we mapped the lsl2 gene between the markers Indel7–22 and Indel7–27, which encompasses a 25-kb region. The rice genome annotation indicated the presence of four candidate genes in this region. Through gene prediction and cDNA sequencing, we confirmed that the target gene in the lsl2 mutant is allelic to LONG STERILE LEMMA1 (G1)/ELONGATED EMPTY GLUME (ELE), hereafter referred to as lsl2. Further analysis of the lsl2 and LSL2 proteins showed a one-amino-acid change, namely, the mutation of serine (Ser) 79 to proline (Pro) in lsl2 compared with LSL2, and this mutation might change the function of the protein. Knockout experiments showed that the lsl2 gene is responsible for the long sterile lemma phenotype. The lsl2 gene might reduce the damage induced by spike germination by decreasing the seed germination rate, but other agronomic traits of rice were not changed in the lsl2 mutant. Taken together, our results demonstrate that the lsl2 gene will have specific application prospects in future rice breeding. Conclusions The lsl2 gene is responsible for the long sterile lemma phenotype and might reduce the damage induced by spike germination by decreasing the seed germination rate.


2015 ◽  
Vol 42 (11) ◽  
pp. 1026 ◽  
Author(s):  
Ping Deng ◽  
Dan Jiang ◽  
Yanmin Dong ◽  
Xingyu Shi ◽  
Wen Jing ◽  
...  

Salt-tolerant mutants are valuable resources for basic and applied research on plant salt tolerance. Here, we report the isolation and characterisation of a salt-tolerant rice (Oryza sativa L.) mutant. This mutant was identified from an ethyl methanesulfonate-induced Nipponbare mutant library, designated as rice salt tolerant 1 (rst1). The rst1 mutant was tolerant to salt stress and showed significantly higher shoot biomass and chlorophyll content, but lower lipid peroxidation and electrolyte leakage under NaCl stress. The improved salt tolerance of this mutant may be due mainly to its enhanced ability to restrict Na+ accumulation in shoots under salt stress conditions. Genetic analysis indicated that the salt tolerance of the rst1 mutant was controlled by a single recessive gene. Quantitative trait locus (QTL) mapping for salt tolerance was performed using an F2 population of rst1 × Peiai 64. Two QTLs were detected, in which the locus on chromosome 6 was determined to be the candidate locus of the rst1 gene. The rst1 locus was subsequently shown to reside within a 270.4-kb region defined by the markers IM29432 and IM29702. This result will be useful for map-based cloning of the rst1 gene and for marker-assisted breeding for salt tolerance in rice.


1984 ◽  
Vol 26 (3) ◽  
pp. 264-271 ◽  
Author(s):  
Kunio Kitada ◽  
Takeshi Omura

One complete asynaptic mutant, MM-19, and two partial ones, MM-4 and MM-16, of Oryza sativa L. induced by N-methyl-N-nitrosourea (MNU) were cytogenetically investigated. No chromosome pairing occurred from zygotene to pachytene and 24 univalents appeared at diakinesis and metaphase 1 in MM-19. On the other hand, a partial lack of chromosome pairing was observed from zygotene to pachytene and various numbers of univalents occurred at metaphase I in MM-4 and MM-16. The mean chiasma frequency per bivalent as well as per cell decreased to different extents in MM-4 and MM-16, and the correlation between both the amount of chromosome pairing from zygotene to pachytene and the chiasma frequency per cell at diakinesis was recognized. Judging from the development of anthers in each meiotic stage, the duration of the stage forming the synizetic knot, at which chromosome pairing took place, was longer in MM-4 and MM-16 than in the normal plant, and was in MM-19 almost as long as in the normal plant. The results of gene analyses indicate that each of the three asynaptic mutants is controlled by a recessive gene and that, at least for MM-4 and MM-16, these genes are located at different loci.Key words: asynaptic, rice, Oryza, chiasma frequency, synizesis.


HortScience ◽  
2005 ◽  
Vol 40 (4) ◽  
pp. 1019A-1019
Author(s):  
Zhoo-Hyeon Kim

New four traits not yet reported were founded. One mutant plant was from a population of 81-1251-D-20M treated with EMS (ethylmethane sulfonate), which had tubular petals. This tubular petal plant had normal pollens in anthers, but could almost not produce its seeds without artificial pollination. It was controlled by one single recessive gene. One new spontaneous dwarf mutant line, R3-10, which bore seedcoatless-like seeds with short pappus, was crossed with normal breeding lines GL5 and 87-25M-2M. From F2 and F3 results, it was found that the two traits (seedcoatless-like and short pappus) were governed by each one single recessive gene. A stem lettuce type cultivar, `Baimach', seemed to be almost green, but was really tinged red, which was extremely suppressed in red color expression. Its tinged red color could not be seen, except on only very limited base parts of the stem and dorsal petal. In two F2 population experiments of the crosses of `Baimach' with `Oakleaf' and 98-43-3, it was found that the suppression of red color expression in `Baimach' was caused by a single recessive gene. It looked different from that of gene “v” (vanishing) by Lindqvist, because the red color of plants with “v” gene of Lindqvist were typically tinged and could be identified easily at a young plant stage, but not that of `Baimach'. I designated these new four genes as Tu-tu (Tu = normal, tu = tubular petal), Pp-pp (Pp = normal, pp = short pappus), Scl-scl (Scl = normal, scl = seedcoatless-like), and In-in (In = normal, in = inhibiting red color expression extremely).


Sign in / Sign up

Export Citation Format

Share Document