Physiological characterisation and fine mapping of a salt-tolerant mutant in rice (Oryza sativa)

2015 ◽  
Vol 42 (11) ◽  
pp. 1026 ◽  
Author(s):  
Ping Deng ◽  
Dan Jiang ◽  
Yanmin Dong ◽  
Xingyu Shi ◽  
Wen Jing ◽  
...  

Salt-tolerant mutants are valuable resources for basic and applied research on plant salt tolerance. Here, we report the isolation and characterisation of a salt-tolerant rice (Oryza sativa L.) mutant. This mutant was identified from an ethyl methanesulfonate-induced Nipponbare mutant library, designated as rice salt tolerant 1 (rst1). The rst1 mutant was tolerant to salt stress and showed significantly higher shoot biomass and chlorophyll content, but lower lipid peroxidation and electrolyte leakage under NaCl stress. The improved salt tolerance of this mutant may be due mainly to its enhanced ability to restrict Na+ accumulation in shoots under salt stress conditions. Genetic analysis indicated that the salt tolerance of the rst1 mutant was controlled by a single recessive gene. Quantitative trait locus (QTL) mapping for salt tolerance was performed using an F2 population of rst1 × Peiai 64. Two QTLs were detected, in which the locus on chromosome 6 was determined to be the candidate locus of the rst1 gene. The rst1 locus was subsequently shown to reside within a 270.4-kb region defined by the markers IM29432 and IM29702. This result will be useful for map-based cloning of the rst1 gene and for marker-assisted breeding for salt tolerance in rice.

2011 ◽  
Vol 38 (4) ◽  
pp. 282 ◽  
Author(s):  
Laisa A. Lisa ◽  
Sabrina M. Elias ◽  
M. Sazzadur Rahman ◽  
Saima Shahid ◽  
Tetsushi Iwasaki ◽  
...  

Good donors in breeding for salt tolerance are a prerequisite for food security under changing climatic conditions. Horkuch, a farmer-popular salt tolerant rice (Oryza sativa L.) variety from the south-west coast of Bangladesh was characterised up to maturity under NaCl stress, together with a modern variety (BRRI dhan41), a sensitive control (BRRI dhan29) and Pokkali, the salt-tolerant benchmark for rice. Horkuch had low reduction in shoot biomass, a low Na : K ratio in flag leaves, a low percent reduction in yield and good partitioning of Na in the older leaves, and maintained high levels of Ca and Mg in the flag leaves. In order to understand the physiology at the molecular level, the expression of salt-responsive genes was investigated using microarray analysis. Salt-stressed cDNA of Horkuch seedlings were hybridised with cDNA probes synthesised mainly from database sequences of Arabidopsis thaliana (L.) Heynh. The upregulated genes included transcription factors, signal transducers, metabolic enzymes, reactive oxygen species (ROS) scavengers, osmoprotectants and some specific salt-induced transcripts. An increase in expression of photosynthesis-related genes as well ROS scavengers suggested that this could be the reason for the better yield performance of Horkuch. The data therefore indicate Horkuch as a potential donor alternative to Pokkali in breeding programs for salt tolerance.


Agronomy ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 569
Author(s):  
Annick Bertrand ◽  
Craig Gatzke ◽  
Marie Bipfubusa ◽  
Vicky Lévesque ◽  
Francois P. Chalifour ◽  
...  

Alfalfa and its rhizobial symbiont are sensitive to salinity. We compared the physiological responses of alfalfa populations inoculated with a salt-tolerant rhizobium strain, exposed to five NaCl concentrations (0, 20, 40, 80, or 160 mM NaCl). Two initial cultivars, Halo (H-TS0) and Bridgeview (B-TS0), and two populations obtained after three cycles of recurrent selection for salt tolerance (H-TS3 and B-TS3) were compared. Biomass, relative water content, carbohydrates, and amino acids concentrations in leaves and nodules were measured. The higher yield of TS3-populations than initial cultivars under salt stress showed the effectiveness of our selection method to improve salinity tolerance. Higher relative root water content in TS3 populations suggests that root osmotic adjustment is one of the mechanisms of salt tolerance. Higher concentrations of sucrose, pinitol, and amino acid in leaves and nodules under salt stress contributed to the osmotic adjustment in alfalfa. Cultivars differed in their response to recurrent selection: under a 160 mM NaCl-stress, aromatic amino acids and branched-chain amino acids (BCAAs) increased in nodules of B-ST3 as compared with B-TS0, while these accumulations were not observed in H-TS3. BCAAs are known to control bacteroid development and their accumulation under severe stress could have contributed to the high nodulation of B-TS3.


2017 ◽  
Vol 44 (7) ◽  
pp. 705 ◽  
Author(s):  
Maysaya Thitisaksakul ◽  
Maria C. Arias ◽  
Shaoyun Dong ◽  
Diane M. Beckles

Rice (Oryza sativa L.) is very sensitive to soil salinity. To identify endogenous mechanisms that may help rice to better survive salt stress, we studied a rice GSK3-like isoform (OsGSK5), an orthologue of a Medicago GSK3 previously shown to enhance salinity tolerance in Arabidopsis by altering carbohydrate metabolism. We wanted to determine whether OsGSK5 functions similarly in rice. OsGSK5 was cloned and sequence, expression, evolutionary and functional analyses were conducted. OsGSK5 was expressed highest in rice seedling roots and was both salt and sugar starvation inducible in this tissue. A short-term salt-shock (150 mM) activated OsGSK5, whereas moderate (50 mM) salinity over the same period repressed the transcript. OsGSK5 response to salinity was due to an ionic effect since it was unaffected by polyethylene glycol. We engineered a rice line with 3.5-fold higher OsGSK5 transcript, which better tolerated cultivation on saline soils (EC = 8 and 10 dS m–2). This line produced more panicles and leaves, and a higher shoot biomass under high salt stress than the control genotypes. Whole-plant 14C-tracing and correlative analysis of OsGSK5 transcript with eco-physiological assessments pointed to the accelerated allocation of carbon to the root and its deposition as starch, as part of the tolerance mechanism.


2018 ◽  
Vol 16 (1) ◽  
pp. 65-77
Author(s):  
M M Islam ◽  
M H Faruqe ◽  
M S Rana ◽  
M Akter ◽  
M A Karim

Soil salinity is one of the most devastating environmental stresses for rice production in the coastal areas of Bangladesh. Improvement in salt tolerance of rice is an important way for the economic utilization of coastal zones. An experiment was conducted at the vinyl house of the Department of Agronomy, Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Bangladesh during December 2016 to April 2017 to determine the effects of different salinity levels on the yield and yield components of some rice (Oryza sativa L.) genotype sand finally, screening of rice genotypes for salt tolerance. The experiment containing four treatments was laid out in a complete randomized design with five replications. The treatments were four levels of saline water with electrical conductivities at control (0.3 dSm-1), 5, 10 and 15dSm-1. Based on screening at germination stage, relatively salt-tolerant eleven genotypes with two check varieties were used in this experiment. The study showed that increase in salinity level significantly decreased yield and yield contributing characters of rice. However, among the eleven, three genotypes (Chapali, Patnai 23 and Soloi) were considered as moderately salt tolerant at 15 dSm-1 on the basis of their yields and yield contributing characteristics such as plant height reduction, total tiller reduction, effective tiller reduction, reduction of fertile grains per panicle, grain yield and relative grain yield. Therefore, Chapali, Patnai 23 and Soloi might be recommended as moderately salt tolerant rice genotypes. The Agriculturists 2018; 16(1) 65-77


PLoS ONE ◽  
2013 ◽  
Vol 8 (2) ◽  
pp. e57767 ◽  
Author(s):  
Devrim Coskun ◽  
Dev T. Britto ◽  
Yuel-Kai Jean ◽  
Imtiaz Kabir ◽  
Inci Tolay ◽  
...  

Plant Science ◽  
2009 ◽  
Vol 176 (3) ◽  
pp. 334-341 ◽  
Author(s):  
Thanikarn Udomchalothorn ◽  
Somporn Maneeprasobsuk ◽  
Eakaphan Bangyeekhun ◽  
Preeda Boon-Long ◽  
Supachitra Chadchawan

2020 ◽  
Vol 71 (4) ◽  
pp. 334 ◽  
Author(s):  
Sabrina M. Elias ◽  
M. Sazzadur Rahman ◽  
Sumaiya F. Khan ◽  
Sudip Biswas ◽  
Taslima Haque ◽  
...  

The rice (Oryza sativa L.) landrace Horkuch from Bangladesh maintains efficient photosynthesis and detoxification under salt stress and was therefore considered to be a useful donor for tolerance traits. Reciprocally crossed bi-parental mapping populations were generated from salt-tolerant Horkuch and high-yielding salt-sensitive variety IR29, in order to identify superior salt-tolerant high-yielding lines as donors. The present study reports on the phenotypic screening data of ~300 F3 segregating populations from the reciprocal cross and their parental lines in seedlings and screening of a subset at maturity stage under gradual salt stress of 12 dS m–1 for seedlings and 8 dS m–1 for mature plants. Correlation, broad-sense heritability and principal component analyses for salt tolerance as well as yield-related traits were conducted in the populations at the two developmental stages. Level of salt injury was found to be correlated with traits such as filled grain weight at maturity stage and biomass-related traits at the seedling stage. This association between yield-related and survival traits helped to identify tolerant and sensitive plants, which were predicative of agronomic performance under salt stress. Moreover, use of the reciprocal-cross population showed how cytoplasmic inheritance of specific traits such as K+ concentrations can affect characteristics of donor plants. Measurement of a large number of traits and analysis of their co-inherited interrelation can therefore help identify the best performing plants under salt stress for effective breeding strategies. The data are being utilised in mapping of quantitative trait loci, and selected progenies are being used as breeding lines for producing durable salt-tolerant, high-yielding rice varieties.


Sign in / Sign up

Export Citation Format

Share Document