scholarly journals Regenerating Agricultural Landscapes with Perennial Groundcover for Intensive Crop Production

Agronomy ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 458 ◽  
Author(s):  
Kenneth J. Moore ◽  
Robert P. Anex ◽  
Amani E. Elobeid ◽  
Shuizhang Fei ◽  
Cornelia B. Flora ◽  
...  

The Midwestern U.S. landscape is one of the most highly altered and intensively managed ecosystems in the country. The predominant crops grown are maize (Zea mays L.) and soybean [Glycine max (L.) Merr]. They are typically grown as monocrops in a simple yearly rotation or with multiple years of maize (2 to 3) followed by a single year of soybean. This system is highly productive because the crops and management systems have been well adapted to the regional growing conditions through substantial public and private investment. Furthermore, markets and supporting infrastructure are highly developed for both crops. As maize and soybean production have intensified, a number of concerns have arisen due to the unintended environmental impacts on the ecosystem. Many areas across the Midwest are experiencing negative impacts on water quality, soil degradation, and increased flood risk due to changes in regional hydrology. The water quality impacts extend even further downstream. We propose the development of an innovative system for growing maize and soybean with perennial groundcover to recover ecosystem services historically provided naturally by predominantly perennial native plant communities. Reincorporating perennial plants into annual cropping systems has the potential of restoring ecosystem services without negatively impacting grain crop production and offers the prospect of increasing grain crop productivity through improving the biological functioning of the system.

Wetlands ◽  
2020 ◽  
Vol 40 (5) ◽  
pp. 1061-1069
Author(s):  
David M. Mushet ◽  
Cali L. Roth

Abstract We explored how a geographic information system modeling approach could be used to quantify supporting ecosystem services related to the type, abundance, and distribution of landscape components. Specifically, we use the Integrated Valuation of Ecosystem Services and Tradeoffs model to quantify habitats that support amphibians and birds, floral resources that support pollinators, native-plant communities that support regional biodiversity, and above- and below-ground carbon stores in the Des Moines Lobe ecoregion of the U.S. We quantified services under two scenarios, one that represented the 2012 Des Moines Lobe landscape, and one that simulated the conversion to crop production of wetlands and surrounding uplands conserved under the USDA Agricultural Conservation Easement Program (ACEP). While ACEP easements only covered 0.35% of the ecoregion, preserved wetlands and grasslands provided for 19,020 ha of amphibian habitat, 21,462 ha of grassland-bird habitat, 18,798 ha of high-quality native wetland plants, and 27,882 ha of floral resources for pollinators. Additionally, ACEP protected lands stored 257,722 t of carbon that, if released, would result in costs in excess of 45-million USD. An integrated approach using results from a GIS-based model in combination with process-based model quantifications will facilitate more informed decisions related to ecosystem service tradeoffs.


2018 ◽  
Author(s):  
Daniel Montoya ◽  
Bart Haegeman ◽  
Sabrina Gaba ◽  
Claire de Mazancourt ◽  
Vincent Bretagnolle ◽  
...  

AbstractChanges in land use generate trade-offs in the delivery of ecosystem services in agricultural landscapes. However, we know little about how the stability of ecosystem services responds to landscape composition, and what ecological mechanisms underlie these trade-offs. Here, we develop a model to investigate the dynamics of three ecosystem services in intensively-managed agroecosystems, i.e. pollination-independent crop yield, crop pollination, and biodiversity. Our model reveals trade-offs and synergies imposed by landscape composition that affect not only the magnitude but also the stability of ecosystem service delivery. Trade-offs involving crop pollination are strongly affected by the degree to which crops depend on pollination and by their relative requirement for pollinator densities. We show conditions for crop production to increase with biodiversity and decreasing crop area, reconciling farmers’ profitability and biodiversity conservation. Our results further suggest that, for pollination-dependent crops, management strategies that focus on maximising yield will often overlook its stability. Given that agriculture has become more pollination-dependent over time, it is essential to understand the mechanisms driving these trade-offs to ensure food security.


2018 ◽  
Author(s):  
Daniel Montoya ◽  
Sabrina Gaba ◽  
Claire de Mazancourt ◽  
Vincent Bretagnolle ◽  
Michel Loreau

AbstractAgricultural management should consider multiple services and stakeholders. Yet, it remains unclear how to guarantee the provision of ecosystem services that reaches stakeholders’ demands, especially considering the observed biodiversity decline and the current global change predictions that may affect food security. Here, we use a model to examine how landscape composition – fraction of semi-natural habitat (SNH) – affects biodiversity and crop production services in intensively-managed agricultural systems. We analyse three groups of stakeholders assumed to value different ecosystem services most – individual farmers (crop yield per area), agricultural unions (landscape production) and conservationists (biodiversity). We find that trade-offs among stakeholders’ demands strongly depend on the degree of pollination dependence of crops, the strength of environmental and demographic stochasticity, and the relative amount of an ecosystem service demanded by each stakeholder, i.e. function thresholds. Intermediate amounts of SNH can allow for the delivery of relatively high levels of the three ecosystem services. Our analysis further suggests that the current levels of SNH protection lie below these intermediate amounts of SNH in intensively-managed agricultural landscapes. Given the worldwide trends in agriculture and global change, these results suggest ways of managing landscapes to reconcile the demands of several actors and ensure for biodiversity conservation and food production.


2020 ◽  
Vol 2 ◽  
Author(s):  
Nathalie Colbach ◽  
Sandrine Petit ◽  
Bruno Chauvel ◽  
Violaine Deytieux ◽  
Martin Lechenet ◽  
...  

The growing recognition of the environmental and health issues associated to pesticide use requires to investigate how to manage weeds with less or no herbicides in arable farming while maintaining crop productivity. The questions of weed harmfulness, herbicide efficacy, the effects of herbicide use on crop yields, and the effect of reducing herbicides on crop production have been addressed over the years but results and interpretations often appear contradictory. In this paper, we critically analyze studies that have focused on the herbicide use, weeds and crop yield nexus. We identified many inconsistencies in the published results and demonstrate that these often stem from differences in the methodologies used and in the choice of the conceptual model that links the three items. Our main findings are: (1) although our review confirms that herbicide reduction increases weed infestation if not compensated by other cultural techniques, there are many shortcomings in the different methods used to assess the impact of weeds on crop production; (2) Reducing herbicide use rarely results in increased crop yield loss due to weeds if farmers compensate low herbicide use by other efficient cultural practices; (3) There is a need for comprehensive studies describing the effect of cropping systems on crop production that explicitly include weeds and disentangle the impact of herbicides from the effect of other practices on weeds and on crop production. We propose a framework that presents all the links and feed-backs that must be considered when analyzing the herbicide-weed-crop yield nexus. We then provide a number of methodological recommendations for future studies. We conclude that, since weeds are causing yield loss, reduced herbicide use and maintained crop productivity necessarily requires a redesign of cropping systems. These new systems should include both agronomic and biodiversity-based levers acting in concert to deliver sustainable weed management.


2019 ◽  
Vol 17 (1-2) ◽  
pp. 14-30
Author(s):  
M Jahangir Alam ◽  
S Ahmed ◽  
MK Islam ◽  
R Islam ◽  
M Islam

Cropping systems of Bangladesh are highly diverse and cultivation costs of puddled transplanted rice (PTR) are high. Therefore, an improved system is needed to address the issues, a field experiment was conducted during 2011-2013 to evaluate system intensification with varying degrees of cropping systems and residue retention. Four cropping systems (CSE) namely CSE1: T. boro rice-T. aman rice (control), CSE2: wheat-mungbean-T. aman rice (wheat and mungbean sown using a power tiller-operated seeder (PTOS) with full tillage in a single pass; puddled transplanted aman), CSE3: wheat-mungbean-dry seeded DS aman rice (DSR), and CSE4: wheat-mungbean-DS aman rice (all sown by PTOS with strip tillage) were compared. Two levels of aman rice residue retention (removed; partial retention i.e. 40 cm of standing stubble) were compared in sub plots. Grain yield was significantly higher (by 11%) when wheat was grown after DSR than PTR. Similarly, PTR and DSR (aman rice) produced statistically similar crop yields. Rice residue retention resulted a significantly higher (by 10%) wheat yield and a slightly increased (by 6%) mungbean yield than that of residues removed. The system productivity of CSE4 was significantly higher (by 10%) than CSE1 when averaged of the two years data. Partial aman residue retention gave significantly higher system yield than residue removal (by 0.6 t ha-1). After two years, no effect of CSE or partial aman residue retention was found on soil physical property (bulk density) of the top soil. Therefore, CSE4 along with residue retention would be more effective for sustainable crop production. The Agriculturists 2019; 17(1-2) 14-30


2020 ◽  
Author(s):  
D. Beillouin ◽  
T. Ben-Ari ◽  
E. Malézieux ◽  
V. Seufert ◽  
D. Makowski

AbstractIncreasing the diversity of cultivated crops, species or cultivars is expected to help preserve biodiversity and enhance ecosystem services in agricultural landscapes. But individual local experiments evaluating crop diversification practices and even meta-analytical synthesis of experimental studies are scattered in their scope, quality and geographical focus. In an effort to make sense of this trove of information, we integrate the results of 5,662 experiments representing more than 48,600 paired observations over 80 experimental years, through the compilation of 83 meta-analyses covering more than 120 crops and 85 countries. The diversification strategies analyzed in the literature are diverse and are here regrouped into five broad categories (i.e., agroforestry, associated plants, intercropping, crop rotation and cultivar mixture). Our exhaustive literature synthesis shows that overall, crop diversification significantly enhances crop yields (median effect +13%), associated biodiversity (+24%), and several ecosystem services including water quality (+84%), pest and disease control (+63%), and soil quality (+11%). While these aggregated global results support the many benefits of adopting more diversified cropping systems, we also identified high variability between meta-analyses for most of the diversification practices examined. This strong global heterogeneity highlights the importance of contextual information about agricultural diversification for local decision-making. Our global database provides important insights into the contextual performance of crop diversification practices that can provide this needed guidance to agricultural and environmental decision-making.


Land ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 245 ◽  
Author(s):  
Mario V. Balzan ◽  
Renata Sadula ◽  
Laura Scalvenzi

Agricultural landscapes in the Mediterranean region may be considered as social-ecological systems that are important for biodiversity conservation whilst contributing to a wide range of ecosystem services. This literature review aims to identify the current state and biases of ecosystem service assessment in agroecosystems within the Mediterranean region, evaluate pressures impacting on agroecosystems and their services, and practices that promote ecosystem service synergies in Mediterranean agroecosystems. A total of 41 papers were selected for analysis from a set of 573 potentially relevant papers. Most of the selected papers focused on supporting, regulating and provisioning services, and mostly assessed ecosystem structure or services in the European Mediterranean context. Literature about benefits and values ascribed to by communities and stakeholders remain limited. Results presented here support the notion of multifunctional Mediterranean agroecosystems and multiple synergies were recorded in this review. Publications dealing with pressures that related to agricultural practices and demographic changes were in the majority and impact on different cropping systems. This review highlights the need to carry out integrated ecosystem service assessments that consider the multiple benefits derived from agroecosystems and which may be used to identify management practices that lead to the improvement of ecosystem services capacities and flows.


2021 ◽  
Author(s):  
Jerzy Lipiec ◽  
Boguslaw Usowicz

<p>Research indicates that spatial differentiation of crop yields and soil properties are largely influenced by agricultural practices and the nature of the soil itself. The aim of this study was to examine the spatial relationship between cereal (wheat and oats ) yields and soil properties related to the application of soil-improving cropping systems (SICS). Four-year experiment (2017-2020) was carried out on low productive sandy soil with application of following SICS: S1 – control; S2 – liming; S3 – green manure/cover crops including lupine, phacelia, serradella; S4 – manure and S5 – manure, liming and cover crops together. Effect of the SICS was evaluated using classical statistics, Bland-Altman analysis and geostatistical methods. Mathematical functions, fitted to the experimental cross- and semivariograms were used for mapping the yields (grain and straw) by ordinary cokriging. The grain yields in years with normal rainfall increased by 2% for S2, 10% for S3, 46% for S4, 47% for S5 compared to control (S1) 2789 kg/ha and in dry years were lower (respectively for S2-S5 by 16.3, 10.6, 2.8, 9.9% compared to control 1567 kg/ha. The range of spatial dependence for the yields in direct semi-variograms varied was 50–100 m and > 100 m in cross-semivariograms using textural fractions as secondary variables. The spatial relationships were stronger between yield and soil texture and properties were much stronger with texture and cation exchange capacity than with pH and organic carbon content. Using cokriging for interpolation (mapping) allowed the delineation of zones of lower and higher cereal yields including areas of the SICS application. Higher cereal yield and lower spatial variability in the areas of SICS compared to control soil were observed in the years with normal rainfall. Analysis of the Bland-Altman including limits of agreement enabled to quantify the effect of particular SICS on cereal yield vs. control reference. Different effect of particular SICS on the cereal yield was observed in the years with scarce and good rainfall amount and distribution during growing season. The greatest variation of the cereal yield was observed in manure amended soil (S4) and it was lower and similar in the areas of remaining SICS (S2-S5). The results will help to to select most effective SICS for localized improving crop productivity and adaptation to global warming.</p><p>Acknowledgements.The study was funded by HORIZON 2020, European Commission, Programme H2020-SFS-2015-2: SoilCare for profitable and sustainable crop production in Europe, project No. 677407 (SoilCare, 2016-2021).</p>


2014 ◽  
Vol 9 (No. 3) ◽  
pp. 127-134 ◽  
Author(s):  
M.A. Gharaibeh ◽  
N.I. Eltaif

Irrigation with treated wastewater is essential for increasing crop production in arid and semi arid regions. Field experiments were conducted on rainfed clayey soil to investigate the impact of water quality, cultivation, and different cropping systems on cumulative infiltration (F<sub>(t)</sub>), field saturated hydraulic conductivity (HC<sub>fs</sub>), penetration resistance (PR), and water stable aggregates (WSA). Treatments were: (1) barley fields tilled for the past 20&nbsp;years (C<sub>B</sub>-T), (2) olive tree fields tilled for the past 20 years (C<sub>O</sub>-T), (3) non-cultivated field for 20&nbsp;years, tilled for the last 2 years (NC-T<sub>2yr</sub>), and (4) non-cultivated non-tilled field (NC-NT) for the past 20 years (control). Results indicated that F<sub>(t)</sub>, HC<sub>fs</sub>, PR, and WSA in NC-NT were significantly higher than in all other treatments. Compared to fresh water (FW), treated wastewater (TWW) significantly reduced F<sub>(t)</sub> and HC<sub>fs</sub> in all treatments. This study showed that irrigation with TWW and protection of soil from any physical manipulation improved soil hydraulic and physical properties to acceptable levels. Therefore, application of such practices could be recommended in arid clayey soils.


2016 ◽  
Vol 108 (2) ◽  
pp. 713-725 ◽  
Author(s):  
Matt A. Yost ◽  
Newell R. Kitchen ◽  
Kenneth A. Sudduth ◽  
Edward J. Sadler ◽  
Claire Baffaut ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document