scholarly journals Effects of Decreasing Dietary Crude Protein Level on Growth Performance, Nutrient Digestion, Serum Metabolites, and Nitrogen Utilization in Growing Goat Kids (Capra. hircus)

Animals ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 151 ◽  
Author(s):  
Wen Zhu ◽  
Wei Xu ◽  
Congcong Wei ◽  
Zijun Zhang ◽  
Chunchao Jiang ◽  
...  

The effects of decreasing dietary crude protein (CP) level on growth performance, nutrient digestion, serum metabolites, and nitrogen utilization in growing goat kids were investigated in the current study. Thirty-six male Anhui white goat kids were randomly assigned to one of three CP content diets: 14.8% (control), 13.4%, and 12.0% of dry matter, respectively. Diets were isoenergetic. The experiment lasted for 14 weeks, with the first two weeks being for adaptation. Results showed that the low-CP diet decreased average daily gain, feed efficiency, digestibility of dry matter, organic matter, crude protein, and fiber. No significant changes were observed in dry-matter intake. With a decrease in dietary CP level, fecal nitrogen excretion (% of nitrogen intake) increased linearly, whereas CP intake, blood urea nitrogen, urinary nitrogen excretion (% of nitrogen intake), and total nitrogen excretion (% of nitrogen intake) decreased. Serum glucose concentration decreased, while concentrations of low-density lipoproteins and non-esterified fatty acids increased with the low-CP diet. In conclusion, decreasing the dietary CP level decreased goats’ nitrogen excretion, but with restrictive effects on growth performance. A diet containing 13.4% CP is optimal for reducing nitrogen excretion without any adverse effect on growth performance of Anhui white goat kids. This concentration is 1.4% points lower than the NRC recommendations and thus is also environmentally beneficial on the input side because it decreases the use of feed (soy) protein.

2021 ◽  
Vol 99 (Supplement_1) ◽  
pp. 47-48
Author(s):  
Wade M Hutchens ◽  
Mike D Tokach ◽  
Jason C Woodworth ◽  
Joel M DeRouchey ◽  
Robert D Goodband ◽  
...  

Abstract Weanling pigs (n = 360, DNA 200 × 400, initially 5.90 kg) were used to evaluate pharmacological levels of Zn (ZnO), diet acidification (sodium diformate; Addcon, Bitterfeld-Wolfen, Germany), and crude protein (18 or 21% CP) on pig performance. At weaning, pigs were assigned to treatments with 5 pigs/pen and 9 pens/treatment. Treatments were arranged in a 2×2×2 factorial with main effects of Zn (110 mg/kg from d 0 to 21 or 3,000 mg/kg from d 0 to 7, and 2,000 mg/kg from d 7 to 21), diet acidification (without or with 1.2% sodium diformate), and dietary CP (21 or 18%). The 21% CP diets were formulated to 1.40 and 1.35% SID Lys in phase 1 and 2, respectively, and 18% CP diets were formulated to 1.20% SID Lys. Experimental diets were fed from d 0 to 21 with a common diet from d 21 to 42. Fecal samples were collected weekly to determine fecal dry matter (DM). Data were analyzed using R Studio as a RCBD. From d 0 to 21, ADG and G:F increased (P < 0.05) for pigs fed pharmacological Zn, and sodium diformate. Overall, ADG tended (P ≤ 0.069) to increase for pigs fed added Zn or sodium diformate. Pigs fed 21% CP had increased (P < 0.05) ADG and G:F from d 0 to 21 and overall G:F compared with those fed 18% CP. Feeding 18% CP diets increased fecal dry matter on d 7 when pharmacological Zn and sodium diformate were not in the diet (Zn×acidifier×CP interaction, P < 0.05). From d 21 to 42, there was no evidence of difference in growth performance. In conclusion, reducing CP without acidification increased fecal DM when pharmacological Zn were not in the diet, but had little effect when it was in the diet. Adding sodium diformate and pharmacological Zn independently improved nursery pig growth performance.


2008 ◽  
Vol 14 (4) ◽  
pp. 325 ◽  
Author(s):  
S. PERTTILÄ ◽  
J. VALAJA ◽  
T. JALAVA

Using ileal digestible amino acids in feed optimising will intensify feed protein utilizing and decrease nitrogen excretion to the environment. The study determined the apparent ileal digestibility (AID) coefficients of amino acids in barley, wheat, oats, triticale, maize, and dehulled oats in the diets of 180 Ross broiler chickens (aged 24–35 days). The birds were fed semi-purified diets that contained grain as the sole protein source and chromium-mordanted straw as an indigestible marker. The AID coefficients of the nutrients were assessed using the slaughter technique, and the apparent metabolisable energy (AME) was determined using total excreta collection. The ileal digestibility of the dry matter and organic matter were the highest in maize. The AME of maize was higher than that of other cereals. The ileal digestibility of crude protein was higher in wheat than that in barley, oats and dehulled oats. The AME of wheat was similar to that of barley and oats but lower than that of triticale and dehulled oats. The amino acid AID was highest in wheat (0.86) and triticale (0.85) and lowest in oats (0.79) and barley 0.77). The average amino acid AID was 0.81 in dehulled oats. The threonine AID was the same in all tested ingredients. The lysine, methionine, and cystine AID coefficients were 0.81, 0.79, and 0.71 respectively for barley; 0.86, 0.84, and 0.38 respectively for oats; 0.87, 0.86, and 0.53 respectively for dehulled oats; 0.84, 0.90, and 0.66 respectively for maize; 0.89, 0.88, and 0.77 respectively for triticale; and 0.87, 0.85, and 0.71 respectively for wheat. Results indicated that AME –values of domestic grains (barley, oats and wheat) are in the same level. Especially, low AME value of wheat needs further investigation.;


2021 ◽  
Vol 32 (1) ◽  
pp. 88-93 ◽  
Author(s):  
O. A. Fasae ◽  
J. A. Alokan ◽  
G. E. Onibi

Four Yankasa sheep, weighing between 19 and 24kg live weight and with age range between 15-24 months were used in a metabolism study to determine the intake and the digestibility of Leucaena leucocephala leaf residue (LLLR) while diets B, C and D had 15, 30 and 45% LLLR inclusion respectively. Dry matter and dietary crude protein intake by trhe environmental animals decreased with increasing level of LLLR inclusion in the diets, although these values were not significant (P>0.05). Also, digestion rates for dry matter and nutrients decreased as protein level of the diets decreased but variation were not significant (P<0.05). Inclusion of 15% LLLR in the dust produced the best weight gain, though this was significantly (P>0.05) different from other treatments. None of the animals developed any health problem and none was underfed as they all recorded an increase in weight. The diet with 15% LLLR produced performance similar to the control both in nutrient intake and weight gain


2003 ◽  
Vol 2003 ◽  
pp. 177-177
Author(s):  
B. Dastar ◽  
A. Golian

Protein is one of the most expensive portion of a broiler chicken diet. Overfeeding of protein may reduce broiler production profit as well as polluting soil through extra nitrogen excretion. Many attempts have been made to reduce dietary crude protein (CP) level with no adverse effect on broiler performance, as a result protein per se is no longer a requirement for growing chicken. Controversial results have been published with regard to lowering dietary CP level. The purpose of these studies was to pinpoint out the lowest possible dietary protein level when supplemental indispensable amino acids are maintained in a practical corn-soy diet.


Sign in / Sign up

Export Citation Format

Share Document