scholarly journals Validation of Suitable Reference Genes for Gene Expression Studies on Yak Testis Development

Animals ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 182 ◽  
Author(s):  
Xuelan Zhou ◽  
Xiaoyun Wu ◽  
Min Chu ◽  
Chunnian Liang ◽  
Xuezhi Ding ◽  
...  

Testis has an important function in male reproduction. Its development is regulated by a large number of genes. The real-time reserve transcriptase-quantitative polymerase chain reaction (RT-qPCR) is a useful tool to evaluate the gene expression levels. However, unsuitable reference genes (RGs) can cause the misinterpretation of gene expression levels. Unfortunately, the ideal RGs for yak testis development are yet to be studied. In this study, 13 commonly used RGs were selected to identify the most stable RGs in yak testis at four different developmental stages, including two immature stages (6 months and 18 months) and two mature stages (30 months and 6 years). This study used GeNorm, NormFinder, BestKeeper, ∆Ct, and RefFinder programs to evaluate the stability of 13 candidate genes. The results of RefFinder showed that the stabilities of TATA box-binding protein (TBP) and ubiquitously expressed transcript protein (UXT) were ranked the top two across all developmental stages. TBP and hydroxymethylbilane synthase (HMBS) were stably expressed in immature stages, while mitochondrial ribosomal protein L39 (MRPL39) and TBP had higher stability than other candidate genes in mature stages. This study provided valuable information for gene expression studies to assist further investigation on the molecular mechanisms in underlying yak testis development.

2016 ◽  
Author(s):  
Po-Yuan Tung ◽  
John D. Blischak ◽  
Chiaowen Joyce Hsiao ◽  
David A. Knowles ◽  
Jonathan E. Burnett ◽  
...  

AbstractSingle cell RNA sequencing (scRNA-seq) can be used to characterize variation in gene expression levels at high resolution. However, the sources of experimental noise in scRNA-seq are not yet well understood. We investigated the technical variation associated with sample processing using the single cell Fluidigm C1 platform. To do so, we processed three C1 replicates from three human induced pluripotent stem cell (iPSC) lines. We added unique molecular identifiers (UMIs) to all samples, to account for amplification bias. We found that the major source of variation in the gene expression data was driven by genotype, but we also observed substantial variation between the technical replicates. We observed that the conversion of reads to molecules using the UMIs was impacted by both biological and technical variation, indicating that UMI counts are not an unbiased estimator of gene expression levels. Based on our results, we suggest a framework for effective scRNA-seq studies.


Genome ◽  
2018 ◽  
Vol 61 (5) ◽  
pp. 349-358 ◽  
Author(s):  
Yanchun You ◽  
Miao Xie ◽  
Liette Vasseur ◽  
Minsheng You

Gene expression analysis provides important clues regarding gene functions, and quantitative real-time PCR (qRT-PCR) is a widely used method in gene expression studies. Reference genes are essential for normalizing and accurately assessing gene expression. In the present study, 16 candidate reference genes (ACTB, CyPA, EF1-α, GAPDH, HSP90, NDPk, RPL13a, RPL18, RPL19, RPL32, RPL4, RPL8, RPS13, RPS4, α-TUB, and β-TUB) from Plutella xylostella were selected to evaluate gene expression stability across different experimental conditions using five statistical algorithms (geNorm, NormFinder, Delta Ct, BestKeeper, and RefFinder). The results suggest that different reference genes or combinations of reference genes are suitable for normalization in gene expression studies of P. xylostella according to the different developmental stages, strains, tissues, and insecticide treatments. Based on the given experimental sets, the most stable reference genes were RPS4 across different developmental stages, RPL8 across different strains and tissues, and EF1-α across different insecticide treatments. A comprehensive and systematic assessment of potential reference genes for gene expression normalization is essential for post-genomic functional research in P. xylostella, a notorious pest with worldwide distribution and a high capacity to adapt and develop resistance to insecticides.


2019 ◽  
Vol 70 (4) ◽  
pp. 261-267
Author(s):  
Gaigai Du ◽  
Liyuan Wang ◽  
Huawei Li ◽  
Peng Sun ◽  
Jianmin Fu ◽  
...  

Background and aims Persimmon (Diospyros kaki) is an economically important fruit tree species with complex flowering characteristics. To obtain accurate expression pattern analysis results, it is vital to select a reliable gene for the normalization of real-time quantitative polymerase chain reaction data. The aim of this study was to identify the optimal internal control gene among six candidate genes for gene expression analysis in different persimmon organs and developmental stages. Materials and methods This analysis was conducted using geNorm and NormFinder software to show differences in the stability of the six reference genes among tissues and floral developmental stages of the same plant. Results Although genes that exhibited moderate expression in NormFinder revealed slightly different expression stabilities than those obtained by geNorm, both sets of results showed that GAPDH was the best reference gene in different organs and floral buds at different developmental stages, whereas 18SrRNA was the least stable gene. Conclusions Based on the overall ranking, GAPDH is the most suitable reference gene and is highly recommended for gene expression studies in different organs and different developmental stages of persimmon. This study provides useful reference data for future gene expression studies and will contribute to improving the accuracy of gene expression results in persimmon.


2014 ◽  
Vol 24 (4) ◽  
pp. 341-352 ◽  
Author(s):  
Paulo R. Ribeiro ◽  
Bas J. W. Dekkers ◽  
Luzimar G. Fernandez ◽  
Renato D. de Castro ◽  
Wilco Ligterink ◽  
...  

AbstractReverse transcription-quantitative polymerase chain reaction (RT-qPCR) is an important technology to analyse gene expression levels during plant development or in response to different treatments. An important requirement to measure gene expression levels accurately is a properly validated set of reference genes. In this context, we analysed the potential use of 17 candidate reference genes across a diverse set of samples, including several tissues, different stages and environmental conditions, encompassing seed germination and seedling growth in Ricinus communis L. These genes were tested by RT-qPCR and ranked according to the stability of their expression using two different approaches: GeNorm and NormFinder. GeNorm and Normfinder indicated that ACT, POB and PP2AA1 comprise the optimal combination for normalization of gene expression data in inter-tissue (heterogeneous sample panel) studies. We also describe the optimal combination of reference genes for a subset of root, endosperm and cotyledon samples. In general, the most stable genes suggested by GeNorm are very consistent with those indicated by NormFinder, which highlights the strength of the selection of reference genes in our study. We also validated the selected reference genes by normalizing the expression levels of three target genes involved in energy metabolism with the reference genes suggested by GeNorm and NormFinder. The approach used in this study to identify stably expressed genes, and thus potential reference genes, was applied successfully for R. communis and it provides important guidelines for RT-qPCR studies in seeds and seedlings for other species (especially in those cases where extensive microarray data are not available).


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7133 ◽  
Author(s):  
Wen Zhou ◽  
Shiqiang Wang ◽  
Lei Yang ◽  
Yan Sun ◽  
Qian Zhang ◽  
...  

Hypericum perforatum L. is a widely known medicinal herb used mostly as a remedy for depression because it contains high levels of naphthodianthrones, phloroglucinols, alkaloids, and some other secondary metabolites. Quantitative real-time PCR (qRT-PCR) is an optimized method for the efficient and reliable quantification of gene expression studies. In general, reference genes are used in qRT-PCR analysis because of their known or suspected housekeeping roles. However, their expression level cannot be assumed to remain stable under all possible experimental conditions. Thus, the identification of high quality reference genes is essential for the interpretation of qRT-PCR data. In this study, we investigated the expression of 14 candidate genes, including nine housekeeping genes (HKGs) (ACT2, ACT3, ACT7, CYP1, EF1-α, GAPDH, TUB-α, TUB-β, and UBC2) and five potential candidate genes (GSA, PKS1, PP2A, RPL13, and SAND). Three programs—GeNorm, NormFinder, and BestKeeper—were applied to evaluate the gene expression stability across four different plant tissues, four developmental stages and a set of abiotic stress and hormonal treatments. Integrating all of the algorithms and evaluations revealed that ACT2 and TUB-β were the most stable combination in different developmental stages samples and all of the experimental samples. ACT2, TUB-β, and EF1-α were identified as the three most applicable reference genes in different tissues and stress-treated samples. The majority of the conventional HKGs performed better than the potential reference genes. The obtained results will aid in improving the credibility of the standardization and quantification of transcription levels in future expression studies on H. perforatum.


2021 ◽  
Vol 12 (3) ◽  
pp. 1011-1017
Author(s):  
Marina Mokhtar Et.al

Quantitative real-time polymerase chain reaction (qRT-PCR) is one of the most common methods for gene expression studies. Data normalization based on reference genes is essential for qRT-PCR assays. This study identifies suitable reference genes for local chilli, Capsicum annuum var MC11 under incident of Cucumber mosaic virus infection. Six candidate genes actin, tub, EF1α, GAPDH, TEF1α and 18SrRNA and three validated Capsicum reference genes UBI-3 ref, β-tub ref and gapdhref were tested against five chilli plant parts stem, shoot, leave, flower and root.  The PCR/qRT-PCR results demonstrate only five candidate references genes actin, EF1α, GAPDH, 18SrRNA, and TEF1α that show specific single band of amplicon, without primer dimers and at the targeted sizes. Through qRT-PCR, GAPDH gives single peak in dissociation curve in all plant parts used further fulfilling the characteristic of reference genes.Previous work on validation of reference genes in pepper shows that only UBI-3 suits to C. annuum var MC11 infected CMV, thus we suggest that GAPDH has a potential to be a validated reference gene for C. annuum var MC11 and can be used together UBI-3 for the purpose of data normalization. 


2016 ◽  
Vol 2016 ◽  
pp. 1-13 ◽  
Author(s):  
Xiting Zhao ◽  
Xiaoli Zhang ◽  
Xiaobo Guo ◽  
Shujie Li ◽  
Linlin Han ◽  
...  

Quantitative real-time polymerase chain reaction (qRT-PCR) is one of the most common methods for gene expression studies. Data normalization based on reference genes is essential for obtaining reliable results for qRT-PCR assays. This study evaluated potential reference genes of Chinese yam (Dioscorea oppositaThunb.), which is an important tuber crop and medicinal plant in East Asia. The expression of ten candidate reference genes across 20 samples from different organs and development stages was assessed. We identified the most stable genes for qRT-PCR studies using combined samples from different organs. Our results also suggest that different suitable reference genes or combinations of reference genes for normalization should be applied according to different organs and developmental stages. To validate the suitability of the reference genes, we evaluated the relative expression ofPE2.1andPE53, which are two genes that may be associated with microtuber formation. Our results provide the foundation for reference gene(s) selection inD. oppositaand will contribute toward more accurate gene analysis studies of the genusDioscorea.


2016 ◽  
Vol 1 (1) ◽  
Author(s):  
Roshini Kalagara ◽  
Weimin Gao ◽  
Honor L. Glenn ◽  
Colleen Ziegler ◽  
Laura Belmont ◽  
...  

Gene expression studies which utilize lipopolysaccharide (LPS)-stimulated macrophages to model immune signaling are widely used for elucidating the mechanisms of inflammation-related disease. When expression levels of target genes are quantified using Real-Time quantitative Reverse Transcription Polymerase Chain Reaction (qRT-PCR), they are analyzed in comparison to reference genes, which should have stable expression. Judicious selection of reference genes is, therefore, critical to interpretation of qRT-PCR results. Ideal reference genes must be identified for each experimental system and demonstrated to remain constant under the experimental conditions. In this study, we evaluated the stability of eight common reference genes: Beta-2-microglobulin (B2M), Cyclophilin A/Peptidylprolyl isomerase A, glyceraldehyde-3-phosphatedehydrogenase (GAPDH), Hypoxanthine Phosphoribosyltransferase 1, Large Ribosomal Protein P0, TATA box binding protein, Ubiquitin C (UBC), and Ribosomal protein L13A. Expression stability of each gene was tested under different conditions of LPS stimulation and compared to untreated controls. Reference gene stabilities were analyzed using Ct value comparison, NormFinder, and geNorm. We found that UBC, closely followed by B2M, is the most stable gene, while the commonly used reference gene GAPDH is the least stable. Thus, for improved accuracy in evaluating gene expression levels, we propose the use of UBC to normalize PCR data from LPS-stimulated macrophages.


2020 ◽  
Author(s):  
Nathaly Maldonado-Taipe ◽  
Dilan Sarange ◽  
Sandra Schmöckel ◽  
Christian Jung ◽  
Nazgol Emrani

AbstractQuinoa depicts high nutritional quality and abiotic stress resistance attracting strong interest in the last years. To unravel the function of candidate genes for agronomically relevant traits, studying their transcriptional activities by RT-qPCR is an important experimental approach. The accuracy of such experiments strongly depends on precise data normalization. To date, validation of potential candidate genes for normalization of diurnal expression studies has not been performed in C. quinoa. We selected eight candidate genes based on transcriptome data and literature survey, including conventionally used reference genes. We used three statistical algorithms (BestKeeper, geNorm and NormFinder) to test their stability and added further validation by a simulation-based strategy. We demonstrated that using different reference genes, including those top ranked by stability, causes significant differences among the resulting diurnal expression patterns, and that our novel approach overcomes failures related to stability-based selection of reference genes. Our results show that isocitrate dehydrogenase enzyme (IDH-A) and polypyrimidine tract-binding protein (PTB) are suitable genes to normalize diurnal expression data of two different quinoa accessions. The validated reference genes obtained in this study will improve the accuracy of RT-qPCR data normalization and facilitate gene expression studies in quinoa.


2018 ◽  
Vol 109 (4) ◽  
pp. 443-452 ◽  
Author(s):  
C. Wang ◽  
J. Yang ◽  
Q. Pan ◽  
S. Yu ◽  
R. Luo ◽  
...  

AbstractA stable reference gene is a key prerequisite for accurate assessment of gene expression. At present, the real-time reverse transcriptase quantitative polymerase chain reaction has been widely used in the analysis of gene expression in a variety of organisms.Neoseiulus barkeriHughes (Acari: Phytoseiidae) is a major predator of mites on many important economically crops. Until now, however, there are no reports evaluating the stability of reference genes in this species. In view of this, we used GeNorm, NormFinder, BestKeeper, and RefFinder software tools to evaluate the expression stability of 11 candidate reference genes in developmental stages and under various abiotic stresses. According to our results, β-ACTandHsp40were the top two stable reference genes in developmental stages. TheHsp60andHsp90were the most stable reference genes in various acaricides stress. For alterations in temperature,Hsp40and α-TUBwere the most suitable reference genes. About UV stress,EF1α and α-TUBwere the best choice, and for the different prey stress, β-ACTand α-TUBwere best suited. In normal conditions, the β-ACT and α-TUB were the two of the highest stable reference genes to respond to all kinds of stresses. The current study provided a valuable foundation for the further analysis of gene expression inN. barkeri.


Sign in / Sign up

Export Citation Format

Share Document