scholarly journals Zoonotic Microsporidia in Wild Lagomorphs in Southern Spain

Animals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 2218
Author(s):  
Anabel Martínez-Padilla ◽  
Javier Caballero-Gómez ◽  
Ángela Magnet ◽  
Félix Gómez-Guillamón ◽  
Fernando Izquierdo ◽  
...  

Microsporidia are obligate intracellular protist-like fungal pathogens that infect a broad range of animal species, including humans. This study aimed to assess the presence of zoonotic microsporidia (Enterocytozoon bieneusi, Encephalitozoon intestinalis, Encephalitozoon hellem, and Encephalitozoon cuniculi) in organ meats of European wild rabbit (Oryctolagus cuniculus) and Iberian hare (Lepus granatensis) consumed by humans in Spain. Between July 2015 and December 2018, kidney samples from 383 wild rabbits and kidney and brain tissues from 79 Iberian hares in southern Spain were tested by species-specific PCR for the detection of microsporidia DNA. Enterocytozoon bieneusi infection was confirmed in three wild rabbits (0.8%; 95% CI: 0.0–1.7%) but not in hares (0.0%; 95% CI: 0.0–4.6%), whereas E. intestinalis DNA was found in one wild rabbit (0.3%; 95% CI: 0.0–0.8%) and three Iberian hares (3.8%; 95% CI: 0.0–8.0%). Neither E. hellem nor E. cuniculi infection were detected in the 462 (0.0%; 95% CI: 0.0–0.8%) lagomorphs analyzed. The absence of E. hellem and E. cuniculi infection suggests a low risk of zoonotic foodborne transmission from these wild lagomorph species in southern Spain. To the authors’ knowledge, this is the first report of E. intestinalis infection in wild rabbits and Iberian hares. The presence of E. bieneusi and E. intestinalis in organ meats from wild lagomorphs can be of public health concern. Additional studies are required to determine the real prevalence of these parasites in European wild rabbit and Iberian hare.

1998 ◽  
Vol 64 (9) ◽  
pp. 3332-3335 ◽  
Author(s):  
Scot E. Dowd ◽  
Charles P. Gerba ◽  
Ian L. Pepper

ABSTRACT Microsporidia, as a group, cause a wide range of infections, though two species of microsporidia in particular,Enterocytozoon bieneusi and Encephalitozoon intestinalis, are associated with gastrointestinal disease in humans. To date, the mode of transmission and environmental occurrence of microsporidia have not been elucidated due to lack of sensitive and specific screening methods. The present study was undertaken with recently developed methods to screen several significant water sources. Water concentrates were subjected to community DNA extraction followed by microsporidium-specific PCR amplification, PCR sequencing, and database homology comparison. A total of 14 water concentrates were screened; 7 of these contained human-pathogenic microsporidia. The presence of Encephalitozoon intestinalis was confirmed in tertiary sewage effluent, surface water, and groundwater; the presence of Enterocytozoon bieneusi was confirmed in surface water; and the presence ofVittaforma corneae was confirmed in tertiary effluent. Thus, this study represents the first confirmation, to the species level, of human-pathogenic microsporidia in water, indicating that these human-pathogenic microsporidia may be waterborne pathogens.


2018 ◽  
Vol 93 (3) ◽  
pp. 313-318 ◽  
Author(s):  
A. Merino-Tejedor ◽  
P. Nejsum ◽  
E.M. Mkupasi ◽  
M.V. Johansen ◽  
Annette Olsen

AbstractThe presence and distribution of various species of canine hookworms in Africa are poorly known. The main objective of this study, therefore, was to identify the hookworm species present in canine faecal samples from Morogoro, Tanzania, using molecular techniques. Faecal samples from 160 local dogs were collected and hookworm positive samples processed to recover larvae for further molecular characterization. DNA was extracted from pools of larvae from individual samples (n = 66), which were analysed subsequently using two different molecular approaches, polymerase chain reaction-linked restriction fragment length polymorphism (PCR-RFLP) and species-specific PCR coupled with Sanger sequencing. The PCR-RFLP technique detected only the presence of the ubiquitousAncylostoma caninumin the 66 samples. However, by species-specific PCR coupled with Sanger sequencing we identified ten samples withA. braziliense, two withUncinaria stenocephalaand five withA. ceylanicum. Thus, all four known species of canine hookworms were identified in Morogoro, Tanzania. To our knowledge this is the first report of the detection of the presence ofU. stenocephalaandA. ceylanicumin Africa using molecular techniques. In addition to their veterinary importance, canine hookworms have zoonotic potential and are of public health concern.


Plant Disease ◽  
2006 ◽  
Vol 90 (3) ◽  
pp. 307-313 ◽  
Author(s):  
Denise R. Smith ◽  
Glen R. Stanosz

A polymerase chain reaction (PCR)-based assay was developed for the specific detection of the fungal pathogens Diplodia pinea and D. scrobiculata from pine host tissues. Variation among mitochondrial small subunit ribosome gene (mt SSU rDNA) sequences of Botryosphaeria species and related anamorphic fungi was exploited to design primer pairs. Forward primer DpF and forward primer DsF, each when used with the nonspecific reverse primer BotR, amplified DNA of D. pinea or D. scrobiculata, respectively. Specificity was confirmed using multiple isolates of each of these two species and those of closely related fungi including Botryosphaeria obtusa. The detection limits for DNA of each pathogen in red and jack pine bark were 50 to 100 pg μl-1 and 1 pg μl-1 in red and jack pine wood. The assay was tested using naturally occurring red and jack pine seedlings and saplings exhibiting symptoms of Diplodia collar rot. Samples from lower stems/root collars of 10 dead trees of each species from each of three sites at each of two locations were tested. Results were positive for D. pinea or D. scrobiculata for the large majorities of symptomatic bark and wood samples from both locations. For positive samples, however, there were effects of location and host species on detection of D. pinea (more frequent on red pine) and D. scrobiculata (more frequent on jack pine) (P < 0.01 in both cases). These results indicate that these new primers are potentially useful for studies in areas or hosts in which both pathogens may be present.


2017 ◽  
Vol 52 (4) ◽  
pp. 202-205 ◽  
Author(s):  
Hyun-Sil Kang ◽  
Hyun-Sung Yang ◽  
Kimberly S. Reece ◽  
Young-Ghan Cho ◽  
Hye-Mi Lee ◽  
...  

Viruses ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 320 ◽  
Author(s):  
Alexandra P. M. Cloherty ◽  
Anusca G. Rader ◽  
Brandon Compeer ◽  
Carla M. S. Ribeiro

Human immunodeficiency virus-1 (HIV-1) persists as a global health concern, with an incidence rate of approximately 2 million, and estimated global prevalence of over 35 million. Combination antiretroviral treatment is highly effective, but HIV-1 patients that have been treated still suffer from chronic inflammation and residual viral replication. It is therefore paramount to identify therapeutically efficacious strategies to eradicate viral reservoirs and ultimately develop a cure for HIV-1. It has been long accepted that the restriction factor tripartite motif protein 5 isoform alpha (TRIM5α) restricts HIV-1 infection in a species-specific manner, with rhesus macaque TRIM5α strongly restricting HIV-1, and human TRIM5α having a minimal restriction capacity. However, several recent studies underscore human TRIM5α as a cell-dependent HIV-1 restriction factor. Here, we present an overview of the latest research on human TRIM5α and propose a novel conceptualization of TRIM5α as a restriction factor with a varied portfolio of antiviral functions, including mediating HIV-1 degradation through autophagy- and proteasome-mediated mechanisms, and acting as a viral sensor and effector of antiviral signaling. We have also expanded on the protective antiviral roles of autophagy and outline the therapeutic potential of autophagy modulation to intervene in chronic HIV-1 infection.


2003 ◽  
Vol 69 (11) ◽  
pp. 6380-6385 ◽  
Author(s):  
R. Temmerman ◽  
L. Masco ◽  
T. Vanhoutte ◽  
G. Huys ◽  
J. Swings

ABSTRACT The taxonomic characterization of a bacterial community is difficult to combine with the monitoring of its temporal changes. None of the currently available identification techniques are able to visualize a “complete” community, whereas techniques designed for analyzing bacterial ecosystems generally display limited or labor-intensive identification potential. This paper describes the optimization and validation of a nested-PCR-denaturing gradient gel electrophoresis (DGGE) approach for the species-specific analysis of bifidobacterial communities from any ecosystem. The method comprises a Bifidobacterium-specific PCR step, followed by purification of the amplicons that serve as template DNA in a second PCR step that amplifies the V3 and V6-V8 regions of the 16S rRNA gene. A mix of both amplicons is analyzed on a DGGE gel, after which the band positions are compared with a previously constructed database of reference strains. The method was validated through the analysis of four artificial mixtures, mimicking the possible bifidobacterial microbiota of the human and chicken intestine, a rumen, and the environment, and of two fecal samples. Except for the species Bifidobacterium coryneforme and B. indicum, all currently known bifidobacteria originating from various ecosystems can be identified in a highly reproducible manner. Because no further cloning and sequencing of the DGGE bands is necessary, this nested-PCR-DGGE technique can be completed within a 24-h span, allowing the species-specific monitoring of temporal changes in the bifidobacterial community.


Sign in / Sign up

Export Citation Format

Share Document