scholarly journals Genomic Prediction in Local Breeds: The Rendena Cattle as a Case Study

Animals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1815
Author(s):  
Enrico Mancin ◽  
Beniamino Tuliozi ◽  
Cristina Sartori ◽  
Nadia Guzzo ◽  
Roberto Mantovani

The maintenance of local cattle breeds is key to selecting for efficient food production, landscape protection, and conservation of biodiversity and local cultural heritage. Rendena is an indigenous cattle breed from the alpine North-East of Italy, selected for dual purpose, but with lesser emphasis given to beef traits. In this situation, increasing accuracy for beef traits could prevent detrimental effects due to the antagonism with milk production. Our study assessed the impact of genomic information on estimated breeding values (EBVs) in Rendena performance-tested bulls. Traits considered were average daily gain, in vivo EUROP score, and in vivo estimate of dressing percentage. The final dataset contained 1691 individuals with phenotypes and 8372 animals in pedigree, 1743 of which were genotyped. Using the cross-validation method, three models were compared: (i) Pedigree-BLUP (PBLUP); (ii) single-step GBLUP (ssGBLUP), and (iii) weighted single-step GBLUP (WssGBLUP). Models including genomic information presented higher accuracy, especially WssGBLUP. However, the model with the best overall properties was the ssGBLUP, showing higher accuracy than PBLUP and optimal values of bias and dispersion parameters. Our study demonstrated that integrating phenotypes for beef traits with genomic data can be helpful to estimate EBVs, even in a small local breed.

2021 ◽  
Author(s):  
Ibrahim Jibrila ◽  
Jeremie Vandenplas ◽  
Jan ten Napel ◽  
Rob Bergsma ◽  
Roel F Veerkamp ◽  
...  

Background: Empirically assessing the impact of preselection on subsequent genetic evaluations of preselected animals requires comparison of scenarios with and without preselection. However, preselection almost always takes place in animal breeding programs, so it is difficult, if not impossible, to have a dataset without preselection. Hence most studies on preselection used simulated datasets, concluding that subsequent genomic estimated breeding values (GEBV) from single-step genomic best linear unbiased prediction (ssGBLUP) are unbiased. The aim of this study was to investigate the impact of genomic preselection, using real data, on accuracy and bias of GEBV of validation animals. Methods: We used data on four pig production traits from one sire-line and one dam-line, with more intense original preselection in the dam-line than in the sire-line. The traits are average daily gain during performance testing, average daily gain throughout life, backfat, and loin depth. Per line, we ran ssGBLUP with the entire data until validation generation and considered this scenario as the reference scenario. We then implemented two scenarios with additional layers of genomic preselection by removing all animals without progeny either i) only in the validation generation, or ii) in all generations. In computing accuracy and bias, we compared GEBV against progeny yield deviation of validation animals. Results: Results showed only a limited loss in accuracy due to the additional layers of genomic preselection. This is true in both lines, for all traits, and regardless of whether validation animals had records or not. Bias too was largely absent, and did not differ greatly among corresponding scenarios with or without additional layers of genomic preselection. Conclusion: We concluded that impact of recent and/or historical genomic preselection is minimal on subsequent genetic evaluations of selection candidates, if these subsequent genetic evaluations are done using ssGBLUP.


2021 ◽  
Author(s):  
Ibrahim Jibrila ◽  
Jeremie Vandenplas ◽  
Jan ten Napel ◽  
Rob Bergsma ◽  
Roel F Veerkamp ◽  
...  

Abstract Background Empirically assessing the impact of preselection on subsequent genetic evaluations of preselected animals requires comparison of scenarios with and without preselection. However, preselection almost always takes place in animal breeding programs, so it is difficult, if not impossible, to have a dataset without preselection. Hence most studies on preselection used simulated datasets, concluding that subsequent genomic estimated breeding values (GEBV) from single-step genomic best linear unbiased prediction (ssGBLUP) are unbiased. The aim of this study was to investigate the impact of genomic preselection, using real data, on accuracy and bias of GEBV of validation animals. Methods We used data on four pig production traits from one sire-line and one dam-line, with more intense original preselection in the dam-line than in the sire-line. The traits are average daily gain during performance testing, average daily gain throughout life, backfat, and loin depth. Per line, we ran ssGBLUP with the entire data until validation generation and considered this scenario as the reference scenario. We then implemented two scenarios with additional layers of genomic preselection by removing all animals without progeny either i) only in the validation generation, or ii) in all generations. In computing accuracy and bias, we compared GEBV against progeny yield deviation of validation animals. Results Results showed only a limited loss in accuracy due to the additional layers of genomic preselection. This is true in both lines, for all traits, and regardless of whether validation animals had records or not. Bias too was largely absent, and did not differ greatly among corresponding scenarios with or without additional layers of genomic preselection. Conclusion We concluded that impact of recent and/or historical genomic preselection is minimal on subsequent genetic evaluations of selection candidates, if these subsequent genetic evaluations are done using ssGBLUP.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Pattarapol Sumreddee ◽  
El Hamidi Hay ◽  
Sajjad Toghiani ◽  
Andrew Roberts ◽  
Samuel E. Aggrey ◽  
...  

Abstract Background Although inbreeding caused by the mating of animals related through a recent common ancestor is expected to have more harmful effects on phenotypes than ancient inbreeding (old inbreeding), estimating these effects requires a clear definition of recent (new) and ancient (old) inbreeding. Several methods have been proposed to classify inbreeding using pedigree and genomic data. Unfortunately, these methods are largely based on heuristic criteria such as the number of generations from a common ancestor or length of runs of homozygosity (ROH) segments. To mitigate these deficiencies, this study aimed to develop a method to classify pedigree and genomic inbreeding into recent and ancient classes based on a grid search algorithm driven by the assumption that new inbreeding tends to have a more pronounced detrimental effect on traits. The proposed method was tested using a cattle population characterized by a deep pedigree. Results Effects of recent and ancient inbreeding were assessed on four growth traits (birth, weaning and yearling weights and average daily gain). Thresholds to classify inbreeding into recent and ancient classes were trait-specific and varied across traits and sources of information. Using pedigree information, inbreeding generated in the last 10 to 11 generations was considered as recent. When genomic information (ROH) was used, thresholds ranged between four to seven generations, indicating, in part, the ability of ROH segments to characterize the harmful effects of inbreeding in shorter periods of time. Nevertheless, using the proposed classification method, the discrimination between new and old inbreeding was less robust when ROH segments were used compared to pedigree. Using several model comparison criteria, the proposed approach was generally better than existing methods. Recent inbreeding appeared to be more harmful across the growth traits analyzed. However, both new and old inbreeding were found to be associated with decreased yearling weight and average daily gain. Conclusions The proposed method provided a more objective quantitative approach for the classification of inbreeding. The proposed method detected a clear divergence in the effects of old and recent inbreeding using pedigree data and it was superior to existing methods for all analyzed traits. Using ROH data, the discrimination between old and recent inbreeding was less clear and the proposed method was superior to existing approaches for two out of the four analyzed traits. Deleterious effects of recent inbreeding were detected sooner (fewer generations) using genomic information than pedigree. Difference in the results using genomic and pedigree information could be due to the dissimilarity in the number of generations to a common ancestor. Additionally, the uncertainty associated with the identification of ROH segments and associated inbreeding could have an effect on the results. Potential biases in the estimation of inbreeding effects may occur when new and old inbreeding are discriminated based on arbitrary thresholds. To minimize the impact of inbreeding, mating designs should take the different inbreeding origins into consideration.


2021 ◽  
Vol 99 (Supplement_1) ◽  
pp. 132-132
Author(s):  
Sergio Calsamiglia ◽  
Maria Rodriguez-Prado ◽  
Gonzalo Fernandez-Turren ◽  
Lorena Castillejos

Abstract In the last 20 years there has been extensive in vitro research on the effects of plant extracts and essential oils on rumen microbial fermentation. The main objectives have been to improve energy metabolism through a reduction in methane emissions and an increase in propionate production; and to improve protein metabolism by reducing proteolysis and deamination. While the positive results from in vitro studies has stimulated the release of commercial products based on blends of essential oils, there is limited in vivo evidence on the rumen fermentation and production performance effects. A literature search was conducted to select in vivo studies where information on rumen fermentation and animal performance was reported. For dairy cattle, we identified 37 studies of which 21 were adequate to test production performance. Ten studies reported increases and 3 decreases in milk yield. For beef cattle, we identified 20 studies with rumen fermentation profile and 22 with performance data. Average daily gain improved in 7 and decreased in 1 study. Only 1 out of 16 studies reported an improvement in feed efficiency. Data indicate that out of more than 500 products tested in vitro, only around 20 have been tested in vivo in different mixtures and doses. The use of statistical approaches will allow to describe the conditions, doses and responses in dairy and beef cattle performance. The search for postruminal effects offers another alternative use. Evidence for effects on the intestinal and systemic effects on the immune system and antioxidant status (i.e., capsicum, garlic, eugenol, cinnamaldehyde curcuma, catechins, anethol or pinene), and in the modulation of metabolic regulation (capsicum, cinnamaldehyde, curcuma or garlic) may open the opportunity for future applications. However, stability of the product in the GI tract, description of the mechanisms of action and the impact of these changes on performance needs to be further demonstrated.


2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 19-20
Author(s):  
Taylor M McWhorter ◽  
Andre Garcia ◽  
Matias Bermann ◽  
Andres Legarra ◽  
Ignacio Aguilar ◽  
...  

Abstract Single-step GBLUP (ssGBLUP) relies on the combination of genomic (G) and pedigree relationships for all (A) and genotyped animals (A22). The procedure implemented in the BLUPF90 software suite first involves combining a small percentage of A22 into G (blending) to avoid singularity problems, then an adjustment to account for the fact the genetic base in G and A22 is different (tuning). However, blending before tuning may not reflect the actual difference between pedigree and genomic base because the blended matrix already contains a portion of A22. The objective of this study was to evaluate the impact of tuning before blending on predictivity, bias, and inflation of GEBV, indirect predictions (IP), and SNP effects from ssGBLUP using American Angus and US Holstein data. We used four different scenarios to obtain genomic predictions: BlendFirst_TunedG2, TuneFirst_TunedG2, BlendFirst_TunedG4, and TuneFirst_TunedG4. TunedG2 adjusts mean diagonals and off-diagonals of G to be similar to the ones in A22, whereas TunedG4 adjusts based on the fixation index. Over 6 million growth records were available for Angus and 5.9 million udder depth records for Holsteins. Genomic information was available on 51,478 Angus and 105,116 Holstein animals. Predictivity and reliability were obtained for 19,056 and 1,711 validation Angus and Holsteins, respectively. We observed the same predictivity and reliability for GEBV or IP in all four scenarios, ranging from 0.47 to 0.60 for Angus and was 0.67 for Holsteins. Slightly less bias was observed when tuning was done before blending. Correlation of SNP effects between scenarios was > 0.99. Refined tuning before blending had no impact on GEBV and marginally reduced the bias. This option will be implemented in the BLUPF90 software suite.


2020 ◽  
Vol 11 ◽  
Author(s):  
Vinícius Silva Junqueira ◽  
Paulo Sávio Lopes ◽  
Daniela Lourenco ◽  
Fabyano Fonseca e Silva ◽  
Fernando Flores Cardoso

Pedigree information is incomplete by nature and commonly not well-established because many of the genetic ties are not known a priori or can be wrong. The genomic era brought new opportunities to assess relationships between individuals. However, when pedigree and genomic information are used simultaneously, which is the case of single-step genomic BLUP (ssGBLUP), defining the genetic base is still a challenge. One alternative to overcome this challenge is to use metafounders, which are pseudo-individuals that describe the genetic relationship between the base population individuals. The purpose of this study was to evaluate the impact of metafounders on the estimation of breeding values for tick resistance under ssGBLUP for a multibreed population composed by Hereford, Braford, and Zebu animals. Three different scenarios were studied: pedigree-based model (BLUP), ssGBLUP, and ssGBLUP with metafounders (ssGBLUPm). In ssGBLUPm, a total of four different metafounders based on breed of origin (i.e., Hereford, Braford, Zebu, and unknown) were included for the animals with missing parents. The relationship coefficient between metafounders was in average 0.54 (ranging from 0.34 to 0.96) suggesting an overlap between ancestor populations. The estimates of metafounder relationships indicate that Hereford and Zebu breeds have a possible common ancestral relationship. Inbreeding coefficients calculated following the metafounder approach had less negative values, suggesting that ancestral populations were large enough and that gametes inherited from the historical population were not identical. Variance components were estimated based on ssGBLUPm, ssGBLUP, and BLUP, but the values from ssGBLUPm were scaled to provide a fair comparison with estimates from the other two models. In general, additive, residual, and phenotypic variance components in the Hereford population were smaller than in Braford across different models. The addition of genomic information increased heritability for Hereford, possibly because of improved genetic relationships. As expected, genomic models had greater predictive ability, with an additional gain for ssGBLUPm over ssGBLUP. The increase in predictive ability was greater for Herefords. Our results show the potential of using metafounders to increase accuracy of GEBV, and therefore, the rate of genetic gain in beef cattle populations with partial levels of missing pedigree information.


2019 ◽  
Vol 97 (Supplement_3) ◽  
pp. 42-42
Author(s):  
Breno Fragomeni ◽  
Zulma Vitezica ◽  
Justine Liu ◽  
Yijian Huang ◽  
Kent Gray ◽  
...  

Abstract The objective of this study was to implement a multi-trait genomic evaluation for maternal and growth traits in a swine population. Phenotypes for preweaning mortality, litter size, weaning weight, and average daily gain were available for 282K Large White pigs. The pedigree included 314k individuals, of which 35,731 were genotyped for 45K SNPs. Variance components were estimated in a multi-trait animal model without genomic information by AIREMLF90. Genomic breeding values were estimated using the genomic information by single-step GBLUP. The algorithm for proven and young (APY) was used to reduce computing time. Genetic correlation between proportion and the total number of preweaning deaths was 0.95. A strong, positive genetic correlation was also observed between weaning weight and average daily gain (r = 0.94). Conversely, the genetic correlations between mortality and growth traits were negative, with an average of -0.7. To avoid computations by expensive threshold models, preweaning mortality was transformed from a binary trait to two linear dam traits: proportion and a total number of piglets dead before weaning. Because of the high genetic correlations within groups of traits, inclusion of only one growth and one mortality trait in the model decreases computing time and allows for the inclusion of other traits. Reduction in computing time for the evaluation using APY was up to 20x, and no differences in EPD ranking were observed. The algorithm for proven and young improves the efficiency of genomic evaluation in swine without harming the quality of predictions. For this population, a binary trait of mortality can be replaced by a linear trait of the dam, resulting in a similar ranking for the selection candidates.


2021 ◽  
Vol 12 ◽  
Author(s):  
Hossein Mehrban ◽  
Masoumeh Naserkheil ◽  
Deukhwan Lee ◽  
Noelia Ibáñez-Escriche

There has been a growing interest in the genetic improvement of carcass traits as an important and primary breeding goal in the beef cattle industry over the last few decades. The use of correlated traits and molecular information can aid in obtaining more accurate estimates of breeding values. This study aimed to assess the improvement in the accuracy of genetic predictions for carcass traits by using ultrasound measurements and yearling weight along with genomic information in Hanwoo beef cattle by comparing four evaluation models using the estimators of the recently developed linear regression method. We compared the performance of single-trait pedigree best linear unbiased prediction [ST-BLUP and single-step genomic (ST-ssGBLUP)], as well as multi-trait (MT-BLUP and MT-ssGBLUP) models for the studied traits at birth and yearling date of steers. The data comprised of 15,796 phenotypic records for yearling weight and ultrasound traits as well as 5,622 records for carcass traits (backfat thickness, carcass weight, eye muscle area, and marbling score), resulting in 43,949 single-nucleotide polymorphisms from 4,284 steers and 2,332 bulls. Our results indicated that averaged across all traits, the accuracy of ssGBLUP models (0.52) was higher than that of pedigree-based BLUP (0.34), regardless of the use of single- or multi-trait models. On average, the accuracy of prediction can be further improved by implementing yearling weight and ultrasound data in the MT-ssGBLUP model (0.56) for the corresponding carcass traits compared to the ST-ssGBLUP model (0.49). Moreover, this study has shown the impact of genomic information and correlated traits on predictions at the yearling date (0.61) using MT-ssGBLUP models, which was advantageous compared to predictions at birth date (0.51) in terms of accuracy. Thus, using genomic information and high genetically correlated traits in the multi-trait model is a promising approach for practical genomic selection in Hanwoo cattle, especially for traits that are difficult to measure.


2019 ◽  
Vol 97 (Supplement_2) ◽  
pp. 37-39
Author(s):  
Andrea Plotzki Reis ◽  
Rodrigo Fagundes da Costa ◽  
Fabyano Fonseca e Silva ◽  
Fernando Flores Cardoso ◽  
Matthew L Spangler

Abstract The aim of this study was to investigate selective phenotyping to maintain adequate prediction accuracy. A simulation was conducted, with 10 replicates, using QMSim to mimic the structure and size of a Braford population. A population with 50 generations, 500 animals per generation, was created with phenotyping and genotyping beginning in generation 11. The scenarios investigated were: 1) Randomly phenotype and genotype 10, 25, 50, 75, and 100% of individuals each generation and; 2) Randomly phenotype and genotype 10, 25, 50, 75, and 100% of individuals in every-other generation. Estimated breeding values (EBV) were obtained using single-step GBLUP and accuracy was determined as the correlation between true BV from simulation and those estimated from the blupf90 family of programs. For scenarios where phenotyping and genotyping occurred every generation, EBV accuracies in generation 11 and 50 ranged from 0.32 to 0.32, 0.42 to 0.43, 0.49 to 0.51, 0.53 to 0.56 and 0.57 to 0.59 when 10, 25, 50, 75, and 100% of animals were chosen, respectively. The highest accuracies were 0.40 and 0.50 in generation 38 for scenarios 10 and 25%; 0.56, 0.61 and 0.64 in generation 40 for scenarios 50, 75 and 100%, respectively. When animals were selected every-other generation, EBV accuracy in generation 11 and 50 ranged from 0.24 to 0.26, 0.36 to 0.36, 0.43 to 0.42, 0.48 to 0.44 and 0.53 to 0.48 for 10, 25, 50, 75 and 100% of selected animals, respectively. The highest accuracies were in generation 23 for scenario 10% (0.31), in generation 37 for scenarios 25 (0.43), 50 (0.50) and 75% (0.55) and in generation 39 for 100% (0.59). Although increasing the density of phenotyped and genotyped animals increased prediction accuracy, some gains were marginal. These differences in accuracy must be contemplated in an economic framework to determine the cost-benefit of additional information.


Author(s):  
Egill Gautason ◽  
Goutam Sahana ◽  
Guosheng Su ◽  
Baldur Helgi Benjamínsson ◽  
Guðmundur Jóhannesson ◽  
...  

Abstract Icelandic Cattle is a local dairy cattle breed in Iceland. With about 26,000 breeding females, it is by far the largest among the indigenous Nordic cattle breeds. The objective of this study was to investigate the feasibility of genomic selection in Icelandic Cattle. Pedigree-based best linear unbiased prediction (PBLUP) and single-step genomic best linear unbiased prediction (ssGBLUP) were compared. Accuracy, bias, and dispersion of estimated breeding values (EBV) for milk yield (MY), fat yield (FY), protein yield (PY), and somatic cell score (SCS) were estimated in a cross validation-based design. Accuracy (r) was estimated by the correlation between EBV and corrected phenotype in a validation set. The accuracy (r) of predictions using ssGBLUP increased by 13, 23, 19 and 20 percentage points for MY, FY, PY, and SCS for genotyped animals, compared to PBLUP. The accuracy of non-genotyped animals was not improved for MY and PY, but increased by 0.9 and 3.5 percentage points for FY and SCS. We used the linear regression (LR) method to quantify relative improvements in accuracy, bias (∆), and dispersion (b) of EBV. Using the LR method, the relative improvements in accuracy of validation from PBLUP to ssGBLUP were 43%, 60%, 50%, and 48% for genotyped animals for MY, FY, PY, and SCS. Single-step GBLUP EBV were less underestimated (∆), and less over-dispersed (b) than PBLUP EBV for FY and PY. Pedigree-based BLUP EBV were close to unbiased for MY and SCS. Single-step GBLUP underestimated MY EBV but overestimated SCS EBV. Based on the average accuracy of 0.45 for ssGBLUP EBV obtained in this study, selection intensities according to the breeding scheme of Icelandic Cattle, and assuming a generation interval of 2.0 years for sires of bulls, sires of dams and dams of bulls, genetic gain in Icelandic Cattle could be increased by about 50% relative to the current breeding scheme.


Sign in / Sign up

Export Citation Format

Share Document