scholarly journals Taxonomic and Functional Distribution of Bacterial Communities in Domestic and Hospital Wastewater System: Implications for Public and Environmental Health

Antibiotics ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1059
Author(s):  
Ramganesh Selvarajan ◽  
Timothy Sibanda ◽  
Jeevan Pandian ◽  
Kevin Mearns

The discharge of untreated hospital and domestic wastewater into receiving water bodies is still a prevalent practice in developing countries. Unfortunately, because of an ever-increasing population of people who are perennially under medication, these wastewaters contain residues of antibiotics and other antimicrobials as well as microbial shedding, the direct and indirect effects of which include the dissemination of antibiotic resistance genes and an increase in the evolution of antibiotic-resistant bacteria that pose a threat to public and environmental health. This study assessed the taxonomic and functional profiles of bacterial communities, as well as the antibiotic concentrations in untreated domestic wastewater (DWW) and hospital wastewater (HWW), using high-throughput sequencing analysis and solid-phase extraction coupled to Ultra-high-performance liquid chromatography Mass Spectrometry (UHPLC–MS/MS) analysis, respectively. The physicochemical qualities of both wastewater systems were also determined. The mean concentration of antibiotics and the concentrations of Cl−, F− and PO43 were higher in HWW samples than in DWW samples. The phylum Firmicutes was dominant in DWW with a sequence coverage of 59.61% while Proteobacteria was dominant in HWW samples with a sequence coverage of 86.32%. At genus level, the genus Exiguobacterium (20.65%) and Roseomonas (67.41%) were predominant in DWW and HWW samples, respectively. Several pathogenic or opportunistic bacterial genera were detected in HWW (Enterococcus, Pseudomonas and Vibrio) and DWW (Clostridium, Klebsiella, Corynebacterium, Bordetella, Staphylocccus and Rhodococcus) samples. Functional prediction analysis indicated the presence of beta-lactam resistance, cationic antimicrobial peptide (CAMP) resistance and vancomycin resistance genes in HWW samples. The presence of these antibiotic resistance genes and cassettes were positively correlated with the presence of pathogens. These findings show the risk posed to public and environmental health by the discharge of untreated domestic and hospital wastewaters into environmental water bodies.

2021 ◽  
Vol 12 ◽  
Author(s):  
Xiurong Guo ◽  
Nan Tang ◽  
Hui Lei ◽  
Qi Fang ◽  
Li Liu ◽  
...  

Controlling antibiotic resistance genes (ARGs) is a worldwide intervention to ensure global health. Hospital wastewater is the main pollution source of antibiotic-resistant bacteria and ARGs in the environment. Expanding our knowledge on the bacterial composition of hospital wastewater could help us to control infections in hospitals and decrease pathogen release into the environment. In this study, a high-throughput sequencing-based metagenomic approach was applied to investigate the community composition of bacteria and ARGs in untreated wastewater from three different types of hospitals [the general hospital, traditional Chinese medicine (TCM) hospital, and stomatology hospital]. In total, 130 phyla and 2,554 genera were identified from the microbiota of the wastewaters, with significantly different bacterial community compositions among the three hospitals. Total ARG analysis using the Antibiotic Resistance Genes Database (ARDB) and Comprehensive Antibiotic Resistance Database (CARD) revealed that the microbiota in the wastewaters from the three hospitals harbored different types and percentage of ARGs, and their composition was specific to the hospital type based on the correlation analysis between species and ARG abundance, some ARGs contributed to different bacterial genera with various relationships in different hospitals. In summary, our findings demonstrated a widespread occurrence of ARGs and ARG-harboring microbiota in untreated wastewaters of different hospitals, suggesting that protection measures should be applied to prevent human infections. Concurrently, hospital wastewater should be treated more specifically for the removal of pathogens before its discharge into the urban sewage system.


2021 ◽  
Author(s):  
Naíla Barbosa da Costa ◽  
Marie-Pier Hébert ◽  
Vincent Fugère ◽  
Yves Terrat ◽  
Gregor Fussmann ◽  
...  

Agrochemicals often contaminate freshwater bodies, affecting microbial communities that underlie aquatic food webs. For example, Roundup, a widely-used glyphosate-based herbicide (GBH), has the potential to indirectly select for antibiotic resistant bacteria. Such cross-selection could occur, for example, if the same genes (e.g. encoding efflux pumps) confer resistance to both glyphosate and antibiotics. To test for cross-resistance in natural aquatic bacterial communities, we added Roundup to 1,000-L mesocosms filled with water from a pristine lake. Over 57 days, we tracked changes in bacterial communities with shotgun metagenomic sequencing, and annotated metagenome-assembled genomes (MAGs) for the presence of known antibiotic resistance genes (ARGs), plasmids, and resistance mutations in the enzyme targeted by glyphosate (enolpyruvyl-shikimate-3-phosphate synthase; EPSPS). We found that high doses of GBH significantly increased ARG frequency and selected for multidrug efflux pumps in particular. The relative abundance of MAGs after a high dose of GBH was predictable based on the number of ARGs encoded in their genomes (17% of variation explained) and, to a lesser extent, by resistance mutations in EPSPS (2% of variation explained). Together, these results indicate that GBHs have the potential to cross-select for antibiotic resistance in natural freshwater bacteria.


2004 ◽  
Vol 50 (1) ◽  
pp. 45-50 ◽  
Author(s):  
P.T. Biyela ◽  
J. Lin ◽  
C.C. Bezuidenhout

The widespread and indiscriminate use of antibiotics has led to the development of antibiotic resistance in pathogenic, as well as commensal, microorganisms. Resistance genes may be horizontally or vertically transferred between bacterial communities in the environment. The recipient bacterial communities may then act as a reservoir of these resistance genes. In this study, we report the incidence of antibiotic resistance in enteric bacteria isolated from the Mhlathuze River and the distribution of genetic elements that may be responsible for the observed antibiotic resistance. The resistance of the enteric bacteria isolated over a period of one year showed that resistance to the older classes of antibiotics was high (94.7% resistance to one antibiotic and 80.8% resistance to two antibiotics). Furthermore, antibiotic resistance data of the environmental isolates showed a strong correlation (r = 0.97) with data obtained from diarrhoea patients. PCR based methods demonstrated that class 1 integrons were present in >50% of the environmental bacterial isolates that were resistant to multiple antibiotics. This class of integrons is capable of transferring genes responsible for resistance to b-lactam, aminoglycoside, sulfonamide and quaternary ammonium antimicrobial agents. Conjugate plasmids were also isolated, but from a small percentage of isolates. This study showed that the Mhlathuze River (a) is a medium for the spread of bacterial antibiotic resistance genes, (b) acts as a reservoir for these genes and (c) due to socio-economic pressures, may play a role in the development and evolution of these genes along this river system.


2017 ◽  
Vol 83 (15) ◽  
Author(s):  
Mohammad Aminul Islam ◽  
Moydul Islam ◽  
Rashedul Hasan ◽  
M. Iqbal Hossain ◽  
Ashikun Nabi ◽  
...  

ABSTRACT Resistance to carbapenem antibiotics through the production of New Delhi metallo-β-lactamase-1 (NDM-1) constitutes an emerging challenge in the treatment of bacterial infections. To monitor the possible source of the spread of these organisms in Dhaka, Bangladesh, we conducted a comparative analysis of wastewater samples from hospital-adjacent areas (HAR) and from community areas (COM), as well as public tap water samples, for the occurrence and characteristics of NDM-1-producing bacteria. Of 72 HAR samples tested, 51 (71%) samples were positive for NDM-1-producing bacteria, as evidenced by phenotypic tests and the presence of the bla NDM-1 gene, compared to 5 of 41 (12.1%) samples from COM samples (P < 0.001). All tap water samples were negative for NDM-1-producing bacteria. Klebsiella pneumoniae (44%) was the predominant bacterial species among bla NDM-1-positive isolates, followed by Escherichia coli (29%), Acinetobacter spp. (15%), and Enterobacter spp. (9%). These bacteria were also positive for one or more other antibiotic resistance genes, including bla CTX-M-1 (80%), bla CTX-M-15 (63%), bla TEM (76%), bla SHV (33%), bla CMY-2 (16%), bla OXA-48-like (2%), bla OXA-1 (53%), and bla OXA-47-like (60%) genes. Around 40% of the isolates contained a qnr gene, while 50% had 16S rRNA methylase genes. The majority of isolates hosted multiple plasmids, and plasmids of 30 to 50 MDa carrying bla NDM-1 were self-transmissible. Our results highlight a number of issues related to the characteristics and source of spread of multidrug-resistant bacteria as a potential public health threat. In view of the existing practice of discharging untreated liquid waste into the environment, hospitals in Dhaka city contribute to the potential dissemination of NDM-1-producing bacteria into the community. IMPORTANCE Infections caused by carbapenemase-producing Enterobacteriaceae are extremely difficult to manage due to their marked resistance to a wide range of antibiotics. NDM-1 is the most recently described carbapenemase, and the bla NDM-1 gene, which encodes NDM-1, is located on self-transmissible plasmids that also carry a considerable number of other antibiotic resistance genes. The present study shows a high prevalence of NDM-1-producing organisms in the wastewater samples from hospital-adjacent areas as a potential source for the spread of these organisms to community areas in Dhaka, Bangladesh. The study also examines the characteristics of the isolates and their potential to horizontally transmit the resistance determinants. The significance of our research is in identifying the mode of spread of multiple-antibiotic-resistant organisms, which will allow the development of containment measures, leading to broader impacts in reducing their spread to the community.


Sign in / Sign up

Export Citation Format

Share Document