scholarly journals Role of AmpC-Inducing Genes in Modulating Other Serine Beta-Lactamases in Escherichia coli

Antibiotics ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 67
Author(s):  
Dhriti Mallik ◽  
Diamond Jain ◽  
Sanjib Bhakta ◽  
Anindya Sundar Ghosh

The consistently mutating bacterial genotypes appear to have accelerated the global challenge with antimicrobial resistance (AMR); it is therefore timely to investigate certain less-explored fields of targeting AMR mechanisms in bacterial pathogens. One of such areas is beta-lactamase (BLA) induction that can provide us with a collection of prospective therapeutic targets. The key genes (ampD, ampE and ampG) to which the AmpC induction mechanism is linked are also involved in regulating the production of fragmented muropeptides generated during cell-wall peptidoglycan recycling. Although the involvement of these genes in inducing class C BLAs is apparent, their effect on serine beta-lactamase (serine-BLA) induction is little known. Here, by using ∆ampD and ∆ampE mutants of E. coli, we attempted to elucidate the effects of ampD and ampE on the expression of serine-BLAs originating from Enterobacteriaceae, viz., CTX-M-15, TEM-1 and OXA-2. Results show that cefotaxime is the preferred inducer for CTX-M-15 and amoxicillin for TEM-1, whereas oxacillin for OXA-2. Surprisingly, exogenous BLA expressions are elevated in ∆ampD and ∆ampE mutants but do not always alter their beta-lactam susceptibility. Moreover, the beta-lactam resistance is increased upon in trans expression of ampD, whereas the same is decreased upon ampE expression, indicating a differential effect of ampD and ampE overexpression. In a nutshell, depending on the BLA, AmpD amidase moderately facilitates a varying level of serine-BLA expression whereas AmpE transporter acts likely as a negative regulator of serine-BLA.

Author(s):  
Kavi Aniis ◽  
Rajamanikandan Kcp ◽  
Arvind Prasanth D

<p>ABSTRACT<br />Objective: Beta-lactams are the group of antibiotics that contain a ring called as “beta-lactam ring,” which is responsible for the antibacterial activity.<br />The presence of resistance among Gram-negative organisms is due to the production of beta-lactamases enzymes that hydrolysis the beta-lactam ring<br />thereby conferring resistance to the organism. This study is undertaken to determine the prevalence of extended-spectrum beta-lactamase (ESBL)<br />producing Gram-negative organism from clinical samples.<br />Methods: A total of 112 clinical samples were taken for this study. The combined disc synergistic test (CDST) was used for the phenotypic detection<br />of ESBL producers from the clinical samples. The genotypic identification of ESBL producers was carried out by alkaline lysis method by isolation of<br />plasmid DNA.<br />Result: A total of 87 bacterial isolates were isolated and identified. Among them, Klebsiella (41%) was the predominant organism followed by<br />Escherichia coli (33%), Proteus (10%), Pseudomonas (10%), and Serratia (6%). Among the various bacterial isolates, Klebsiella showed a higher<br />percentage of resistance. The CDST showed that 8 isolates of Klebsiella, 3 isolates of E. coli, and 1 isolate of Pseudomonas were found to be ESBL<br />producers. The genotypic confirmation showed that the two bacterial isolates, namely, Klebsiella and E. coli were found to possess temoniera (TEM)<br />gene which was the 400-500 bp conferring resistance to the antibiotics.<br />Conclusion: The results of this study suggest that early detection of ESBL producing Gram-negative organism is a very important step in planning the<br />therapy of patient in Hospitals. CDST continues to be a good indicator in the detection of ESBL producers.<br />Keywords: Beta-lactamases, Gram-negative bacilli, Extended-spectrum beta-lactamase, Resistance, Combined disc synergistic test.</p><p> </p>


2014 ◽  
Vol 6 (01) ◽  
pp. 007-013 ◽  
Author(s):  
Sridhar PN Rao ◽  
Prasad Subba Rama ◽  
Vishwanath Gurushanthappa ◽  
Radhakrishna Manipura ◽  
Krishna Srinivasan

ABSTRACT Background: There are sporadic reports on detection of extended-spectrum beta-lactamases (ESBL) producers from Karnataka; hence, this is a first multicentric study across Karnataka state to determine the prevalence of ESBL production among clinical isolates of Escherichia coli and Klebsiella pneumoniaei. Aims and objectives: To determine the prevalence of ESBL producing clinical isolates of E. coli and K. pneumoniae from five geographically distributed centers across Karnataka, to study the susceptibility of ESBL producing isolates to other beta-lactam and beta-lactam-beta-lactamase inhibitors and to demonstrate transferability of plasmids coding for ESBL phenotype. Materials and Methods: Two hundred isolates of E. coli and K. pneumoniae each were collected from each of the five centers (Bellary, Dharwad, Davangere, Kolar and Mangalore). They were screened for resistance to screening agents (ceftazidime, cefotaxime, ceftriaxone, aztreonam) and positive isolates were confirmed for ESBL production by test described by Clinical and Laboratory Standards Institute . Co-production of ESBL and AmpC beta-lactamase was identified by using amino-phenylboronic acid disk method. Susceptibility of ESBL producers to beta-lactam antibiotics and beta-lactamase inhibitors was performed. Transferability of plasmids was performed by conjugation experiment. Results: Overall prevalence of ESBL production among E. coli and K. pneumoniae across five centers of the state was 57.5%. ESBL production was found to be 61.4% among E. coli and 46.2% among K. pneumoniae. ESBL production was significantly more among E. coli than K. pneumoniae. Significant variations in distribution of ESBL across the state was observed among E. coli isolates, but not among K. pneumoniae isolates. All ESBL producers demonstrated minimum inhibitory concentration levels ≥2 μg/ml towards cefotaxime, ceftazidime and ceftriaxone. Conclusion: Overall prevalence of ESBL production among clinical isolates of E. coli and K. pneumoniae across Karnataka state was high. The prevalence of ESBL production was significantly higher with E. coli than K. pneumoniae isolates. Higher rates of resistance to ceftriaxone and cefotaxime than to ceftazidime suggests the possibility of presence of CTX-M type ESBLs. Of all the beta-lactam/beta-lactamase inhibitor combinations tested, cefepime-tazobactam demonstrated highest in-vitro activity against ESBL producers. There was no statistical difference in the transferability of plasmids among E. coli and K. pneumoniae.


2010 ◽  
Vol 55 (No. 3) ◽  
pp. 119-124 ◽  
Author(s):  
M. Kolar ◽  
J. Bardon ◽  
M. Chroma ◽  
K. Hricova ◽  
T. Stosova ◽  
...  

A major reason for resistance of <I>Enterobacteriaceae</I> to beta-lactam antibiotics is production of ESBLs and AmpC beta-lactamases. As their more detailed description in poultry is unavailable in the Czech Republic, the presented study aimed at assessing their occurrence and molecular characteristics. A total of 154 composite samples from broilers and 150 cloacal swabs from turkeys were examined. Production of ESBLs was detected in seven <I>Escherichia coli</I> isolates and AmpC enzymes in two <I>E. coli</I> isolates. The most frequent ESBL types were CTX-M-1 and SHV-12 and the most common AmpC enzymes were the CMY-2 types.


1991 ◽  
Vol 35 (5) ◽  
pp. 813-818 ◽  
Author(s):  
N Lachance ◽  
C Gaudreau ◽  
F Lamothe ◽  
L A Lariviere

2013 ◽  
Vol 454 (3) ◽  
pp. 585-595 ◽  
Author(s):  
Joana Sá-Pessoa ◽  
Sandra Paiva ◽  
David Ribas ◽  
Inês Jesus Silva ◽  
Sandra Cristina Viegas ◽  
...  

In the present paper we describe a new carboxylic acid transporter in Escherichia coli encoded by the gene yaaH. In contrast to what had been described for other YaaH family members, the E. coli transporter is highly specific for acetic acid (a monocarboxylate) and for succinic acid (a dicarboxylate), with affinity constants at pH 6.0 of 1.24±0.13 mM for acetic acid and 1.18±0.10 mM for succinic acid. In glucose-grown cells the ΔyaaH mutant is compromised for the uptake of both labelled acetic and succinic acids. YaaH, together with ActP, described previously as an acetate transporter, affect the use of acetic acid as sole carbon and energy source. Both genes have to be deleted simultaneously to abolish acetate transport. The uptake of acetate and succinate was restored when yaaH was expressed in trans in ΔyaaH ΔactP cells. We also demonstrate the critical role of YaaH amino acid residues Leu131 and Ala164 on the enhanced ability to transport lactate. Owing to its functional role in acetate and succinate uptake we propose its assignment as SatP: the Succinate–Acetate Transporter Protein.


1997 ◽  
Vol 41 (2) ◽  
pp. 374-378 ◽  
Author(s):  
M M Caniça ◽  
M Barthélémy ◽  
L Gilly ◽  
R Labia ◽  
R Krishnamoorthy ◽  
...  

IRT-14 (TEM-45) is a new mutant TEM-type beta-lactamase that was isolated from clinical Escherichia coli P37 and that confers resistance to broad-spectrum penicillins with reduced sensitivity to beta-lactamase inhibitors. The MICs of amoxicillin alone and of amoxicillin combined with 2 micrograms of clavulanic acid or 2 micrograms of tazobactam per ml were 4,096, 2,048, and 1,024 micrograms/ml, respectively. The strain was susceptible to cephalosporins, aztreonam, moxalactam, and imipenem. The enzyme was purified to homogeneity, and values of the kinetic parameters Kcat, Km, and Kcat/Km were determined for different substrates. This enzyme, with a pI of 5.2, was found to have reduced affinity for broad-spectrum penicillins and cephalosporins. The values of 50% inhibitory concentrations of clavulanic acid, sulbactam, tazobactam, and brobactam are correlated with the higher KmS for substrates. The resistance of E. coli P37 to mechanism-based inactivators results from a higher level of production of the TEM-derived enzyme due to the G-to-T substitution at position 162 (G-162-->T) in the promoter region of blaTEM and from the structural modifications resulting from the Met-69-->Leu and Arg-275-->Gln substitutions that characterize IRT-14 beta-lactamase.


Author(s):  
N. Mohammad Sharif ◽  
B. Sreedevi ◽  
R. K. Chaitanya ◽  
Ch. Srilatha

The present study was carried out to characterize beta-lactam resistance in Escherichia coli isolated from healthy and diarrhoeic dogs. A total of 93 E. coli were isolated from the rectal swabs of 136 dogs (60/92 of healthy dogs and 33/44 of diarrhoeic dogs). Predominant serotypes detected include rough (19 isolates), O141 (5), O9 (2), O126 (2), O128 (2), O15, O20, O35, O49, O63, O85, O101, O116, O117, O118, O119 (1 isolate each) and the rest of 52 isolates were untypable (UT). Disc diffusion method revealed resistance to cefotaxime (41.9%), ceftriaxone (34.4%), ceftazidime (30.1%) and aztreonam (18.2%). Overall frequency of extended spectrum beta-lactamase (ESBL) phenotype was found to be 29% (27/93). Beta-lactamase genes detected include blaAmpC (86.0%), blaSHV (30.1%), blaCTX-M group-1 (19.3%), blaTEM (17.2%), blaOXA (13.9%) and blaCTX-M group-2 (7.5%). The study revealed resistance to commonly prescribed beta-lactams, with ESBL phenotype in E. coli of canine origin in Andhra Pradesh, India.


2001 ◽  
Vol 183 (2) ◽  
pp. 435-442 ◽  
Author(s):  
Juliette K. Tinker ◽  
Lisa S. Hancox ◽  
Steven Clegg

ABSTRACT Type 1 fimbriae are proteinaceous surface appendages that carry adhesins specific for mannosylated glycoproteins. These fimbriae are found on most members of the family Enterobacteriaceae and are known to facilitate binding to a variety of eukaryotic cells, including those found on the mucosal surfaces of the alimentary tract. We have shown that the regulation of type 1 fimbrial expression in Salmonella enterica serovar Typhimurium is controlled, in part, by the products of four genes found within the fimgene cluster: fimZ, fimY, fimW, andfimU. To better understand the specific role of FimW in fimbrial expression, a mutation was constructed in this gene by the insertion of a kanamycin resistance DNA cassette into the chromosome. The resulting fimW mutation was characterized by mannose-sensitive hemagglutination and agglutination with fimbria-specific antiserum. Assays suggested that this mutant was more strongly fimbriate than the parental strain, exhibiting a four- to eightfold increase in fimbrial production. The fimWmutation was introduced into a second strain of Salmonella enterica serovar Typhimurium, and this mutant was also found to be strongly fimbriate compared to the parental strain. Consistent with the role of this protein as a negative regulator, fimA-lacZexpression in serovar Typhimurium, as well as in Escherichia coli, was increased twofold in the absence of functional FimW. Primer extension analysis determined that fimWtranscription is initiated from its own promoter 31 bp upstream of the translation start site. Analysis using a fimW-lacZ reporter indicated that fimW expression in serovar Typhimurium was increased under conditions that select for poorly fimbriate bacteria and low fimA expression. FimW also appears to act as an autoregulator, since expression from the fimW-lacZ reporter was increased in a fimW mutant. FimW was partially purified by fusion with the E. coli maltose-binding protein. Use of this FimW protein extract, as well as others, in DNA-binding assays was unable to identify a specific binding site for FimW in thefimA, fimZ, fimY, orfimW promoter regions. To analyze protein-protein interactions, FimW was expressed in a LexA-based two-hybrid system inE. coli. A significant interaction between FimW and the DNA-binding activator protein, FimZ, was detected using this system. These results indicate that FimW is a negative regulator of serovar Typhimurium type 1 fimbrial expression and may function by interfering with FimZ-mediated activation of fimA expression.


Sign in / Sign up

Export Citation Format

Share Document