scholarly journals Fursultiamine Prevents Drug-Induced Ototoxicity by Reducing Accumulation of Reactive Oxygen Species in Mouse Cochlea

Antioxidants ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1526
Author(s):  
Ye-Ri Kim ◽  
Tae-Jun Kwon ◽  
Un-Kyung Kim ◽  
In-Kyu Lee ◽  
Kyu-Yup Lee ◽  
...  

Drug-induced hearing loss is a major type of acquired sensorineural hearing loss. Cisplatin and aminoglycoside antibiotics have been known to cause ototoxicity, and excessive accumulation of intracellular reactive oxygen species (ROS) are suggested as the common major pathology of cisplatin- and aminoglycoside antibiotics-induced ototoxicity. Fursultiamine, also called thiamine tetrahydrofurfuryl disulfide, is a thiamine disulfide derivative that may have antioxidant effects. To evaluate whether fursultiamine can prevent cisplatin- and kanamycin-induced ototoxicity, we investigated their preventive potential using mouse cochlear explant culture system. Immunofluorescence staining of mouse cochlear hair cells showed that fursultiamine pretreatment reduced cisplatin- and kanamycin-induced damage to both inner and outer hair cells. Fursultiamine attenuated mitochondrial ROS accumulation as evidenced by MitoSOX Red staining and restored mitochondrial membrane potential in a JC-1 assay. In addition, fursultiamine pretreatment reduced active caspase-3 and TUNEL signals after cisplatin or kanamycin treatment, indicating that fursultiamine decreased apoptotic hair cell death. This study is the first to show a protective effect of fursultiamine against cisplatin- and aminoglycoside antibiotics-induced ototoxicity. Our results suggest that fursultiamine could act as an antioxidant and anti-apoptotic agent against mitochondrial oxidative stress.in cochlear hair cells

2021 ◽  
Author(s):  
Thomas Foster ◽  
Corina Ionescu ◽  
Daniel Walker ◽  
Melissa Jones ◽  
Susbin Wagle ◽  
...  

Advancement in the prevention of chemotherapy-induced hearing loss has proposed new nano-based delivery matrices that can target inner ear regions most damaged by chemotherapy. Chemotherapy agents (e.g., cisplatin) induce increased reactive oxygen species formation in the inner ear that damage sensory hair cells and result in irreversible hearing impairment. Exogenous antioxidants (e.g., Probucol and metformin) have been shown to block the formation of these reactive oxygen species. Delivery of these drugs in effective concentrations remains a challenge. Microencapsulation in combination with drug excipients provides one technique to effectively deliver these drugs. This paper investigates the use of probucol and metformin in combination with drug excipients for novel, inner ear, delivery.


2021 ◽  
Vol 15 ◽  
Author(s):  
Pengcheng Xu ◽  
Longhao Wang ◽  
Hu Peng ◽  
Huihui Liu ◽  
Hongchao Liu ◽  
...  

Mutations in a number of genes encoding mitochondrial aminoacyl-tRNA synthetases lead to non-syndromic and/or syndromic sensorineural hearing loss in humans, while their cellular and physiological pathology in cochlea has rarely been investigated in vivo. In this study, we showed that histidyl-tRNA synthetase HARS2, whose deficiency is associated with Perrault syndrome 2 (PRLTS2), is robustly expressed in postnatal mouse cochlea including the outer and inner hair cells. Targeted knockout of Hars2 in mouse hair cells resulted in delayed onset (P30), rapidly progressive hearing loss similar to the PRLTS2 hearing phenotype. Significant hair cell loss was observed starting from P45 following elevated reactive oxygen species (ROS) level and activated mitochondrial apoptotic pathway. Despite of normal ribbon synapse formation, whole-cell patch clamp of the inner hair cells revealed reduced calcium influx and compromised sustained synaptic exocytosis prior to the hair cell loss at P30, consistent with the decreased supra-threshold wave I amplitudes of the auditory brainstem response. Starting from P14, increasing proportion of morphologically abnormal mitochondria was observed by transmission electron microscope, exhibiting swelling, deformation, loss of cristae and emergence of large intrinsic vacuoles that are associated with mitochondrial dysfunction. Though the mitochondrial abnormalities are more prominent in inner hair cells, it is the outer hair cells suffering more severe cell loss. Taken together, our results suggest that conditional knockout of Hars2 in mouse cochlear hair cells leads to accumulating mitochondrial dysfunction and ROS stress, triggers progressive hearing loss highlighted by hair cell synaptopathy and apoptosis, and is differentially perceived by inner and outer hair cells.


Author(s):  
Zu-Hong He ◽  
Song Pan ◽  
Hong-Wei Zheng ◽  
Qiao-Jun Fang ◽  
Kayla Hill ◽  
...  

Attenuation of noise-induced hair cell loss and noise-induced hearing loss (NIHL) by treatment with FK506 (tacrolimus), a calcineurin (CaN/PP2B) inhibitor used clinically as an immunosuppressant, has been previously reported, but the downstream mechanisms of FK506-attenuated NIHL remain unknown. Here we showed that CaN immunolabeling in outer hair cells (OHCs) and nuclear factor of activated T-cells isoform c4 (NFATc4/NFAT3) in OHC nuclei are significantly increased after moderate noise exposure in adult CBA/J mice. Consequently, treatment with FK506 significantly reduces moderate-noise-induced loss of OHCs and NIHL. Furthermore, induction of reactive oxygen species (ROS) by moderate noise was significantly diminished by treatment with FK506. In agreement with our previous finding that autophagy marker microtubule-associated protein light chain 3B (LC3B) does not change in OHCs under conditions of moderate-noise-induced permanent threshold shifts, treatment with FK506 increases LC3B immunolabeling in OHCs after exposure to moderate noise. Additionally, prevention of NIHL by treatment with FK506 was partially abolished by pretreatment with LC3B small interfering RNA. Taken together, these results indicate that attenuation of moderate-noise-induced OHC loss and hearing loss by FK506 treatment occurs not only via inhibition of CaN activity but also through inhibition of ROS and activation of autophagy.


2022 ◽  
Vol 2022 ◽  
pp. 1-12
Author(s):  
Leyi Zhang ◽  
Jiaqin Huang ◽  
Danli Zhang ◽  
Xiaojing Lei ◽  
Yan Ma ◽  
...  

Cardio-cerebrovascular disease (CCVD) has become the leading cause of human mortality with the coming acceleration of global population aging. Atherosclerosis is among the most common pathological changes in CCVDs. It is also a multifactorial disorder; oxidative stress caused by excessive production of reactive oxygen species (ROS) has become an important mechanism of atherosclerosis. Chinese herbal medicine (CHM) is a major type of natural medicine that has made great contributions to human health. CHMs are increasingly used in the auxiliary clinical treatment of atherosclerosis. Although their mechanism of action is unclear, CHMs can exert a variety of antiatherosclerosis effects by regulating intracellular ROS. In this review, we discussed the mechanism of ROS regulation in atherosclerosis and analyzed the role of CHMs in the treatment of atherosclerosis via ROS.


2020 ◽  
Vol 119 (10) ◽  
pp. 3481-3489 ◽  
Author(s):  
Rajender Kumar ◽  
Ruma Rani ◽  
Saroj Kumar ◽  
Khushboo Sethi ◽  
Shikha Jain ◽  
...  

2021 ◽  
Vol 22 (13) ◽  
pp. 6664
Author(s):  
Stella Chin-Shaw Tsai ◽  
Kuender D. Yang ◽  
Kuang-Hsi Chang ◽  
Frank Cheau-Feng Lin ◽  
Ruey-Hwang Chou ◽  
...  

Umbilical cord-derived mesenchymal stromal cells (UCMSCs) have potential applications in regenerative medicine. UCMSCs have been demonstrated to repair tissue damage in many inflammatory and degenerative diseases. We have previously shown that UCMSC exosomes reduce nerve injury-induced pain in rats. In this study, we characterized UCMSC exosomes using RNA sequencing and proteomic analyses and investigated their protective effects on cisplatin-induced hearing loss in mice. Two independent experiments were designed to investigate the protective effects on cisplatin-induced hearing loss in mice: (i) chronic intraperitoneal cisplatin administration (4 mg/kg) once per day for 5 consecutive days and intraperitoneal UCMSC exosome (1.2 μg/μL) injection at the same time point; and (ii) UCMSC exosome (1.2 μg/μL) injection through a round window niche 3 days after chronic cisplatin administration. Our data suggest that UCMSC exosomes exert protective effects in vivo. The post-traumatic administration of UCMSC exosomes significantly improved hearing loss and rescued the loss of cochlear hair cells in mice receiving chronic cisplatin injection. Neuropathological gene panel analyses further revealed the UCMSC exosomes treatment led to beneficial changes in the expression levels of many genes in the cochlear tissues of cisplatin-injected mice. In conclusion, UCMSC exosomes exerted protective effects in treating ototoxicity-induced hearing loss by promoting tissue remodeling and repair.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Hamid R. Molavian ◽  
Aaron Goldman ◽  
Colin J. Phipps ◽  
Mohammad Kohandel ◽  
Bradly G. Wouters ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document