scholarly journals Antioxidant and Anti-Inflammatory Activity of Cynanchum acutum L. Isolated Flavonoids Using Experimentally Induced Type 2 Diabetes Mellitus: Biological and In Silico Investigation for NF-κB Pathway/miR-146a Expression Modulation

Antioxidants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1713
Author(s):  
Reda F. A. Abdelhameed ◽  
Amany K. Ibrahim ◽  
Mahmoud A. Elfaky ◽  
Eman S. Habib ◽  
Mayada I. Mahamed ◽  
...  

Cynanchum acutum L. is a climbing vine that belongs to the family Apocynaceae. Using different chromatographic techniques, seven compounds were isolated from the methanolic extract of the plant. The isolated compounds include six flavonoid compounds identified as rutin (1), quercetin-3-O-neohesperidoside (2), quercetin-3-O-β-galactoside (3), isoquercitrin (4), quercetin (5), and kaempferol 3-O-β-glucoside (6), in addition to a coumarin, scopoletin (7). The structures of the compounds were elucidated based on 1D NMR spectroscopy and high-resolution mass spectrometry (HR-MS), and by comparison with data reported in the literature. The first five compounds were selected for in vivo investigation of their anti-inflammatory and antioxidant properties in a rat model of type 2 diabetes. All tested compounds significantly reduced oxidative stress and increased erythrocyte lysate levels of antioxidant enzymes, along with the amelioration of the serum levels of inflammatory markers. Upregulation of miR-146a expression and downregulation of nuclear factor kappa B (NF-κB) expression were detected in the liver and adipose tissue of rats treated with the isolated flavonoids. Results from the biological investigation and those from the validated molecular modeling approach on two biological targets of the NF-κB pathway managed to highlight the superior anti-inflammatory activity of quercetin-3-O-galactoside (3) and quercetin (5), as compared to other bioactive metabolites.

Biomedicines ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 615
Author(s):  
Shang-En Huang ◽  
Erna Sulistyowati ◽  
Yu-Ying Chao ◽  
Bin-Nan Wu ◽  
Zen-Kong Dai ◽  
...  

Osteoarthritis is a degenerative arthropathy that is mainly characterized by dysregulation of inflammatory responses. KMUP-1, a derived chemical synthetic of xanthine, has been shown to have anti-inflammatory and antioxidant properties. Here, we aimed to investigate the in vitro anti-inflammatory and in vivo anti-osteoarthritis effects of KMUP-1. Protein and gene expressions of inflammation markers were determined by ELISA, Western blotting and microarray, respectively. RAW264.7 mouse macrophages were cultured and pretreated with KMUP-1 (1, 5, 10 μM). The productions of TNF-α, IL-6, MMP-2 and MMP- 9 were reduced by KMUP-1 pretreatment in LPS-induced inflammation of RAW264.7 cells. The expressions of iNOS, TNF-α, COX-2, MMP-2 and MMP-9 were also inhibited by KMUP-1 pretreatment. The gene expression levels of TNF and COX families were also downregulated. In addition, KMUP-1 suppressed the activations of ERK, JNK and p38 as well as phosphorylation of IκBα/NF-κB signaling pathways. Furthermore, SIRT1 inhibitor attenuated the inhibitory effect of KMUP-1 in LPS-induced NF-κB activation. In vivo study showed that KMUP-1 reduced mechanical hyperalgesia in monoiodoacetic acid (MIA)-induced rats OA. Additionally, KMUP-1 pretreatment reduced the serum levels of TNF-α and IL-6 in MIA-injected rats. Moreover, macroscopic and histological observation showed that KMUP-1 reduced articular cartilage erosion in rats. Our results demonstrated that KMUP-1 inhibited the inflammatory responses and restored SIRT1 in vitro, alleviated joint-related pain and cartilage destruction in vivo. Taken together, KMUP-1 has the potential to improve MIA-induced articular cartilage degradation by inhibiting the levels and expression of inflammatory mediators suggesting that KMUP-1 might be a potential therapeutic agent for OA.


2004 ◽  
Vol 183 (1) ◽  
pp. 203-216 ◽  
Author(s):  
M Alexandra Sorocéanu ◽  
Dengshun Miao ◽  
Xiu-Ying Bai ◽  
Hanyi Su ◽  
David Goltzman ◽  
...  

Thiazolidinediones (TZDs) increase peripheral tissue insulin sensitivity in patients with type 2 diabetes mellitus by activating the nuclear receptor peroxisome proliferator-activated receptor γ (PPARγ). In bone marrow stromal cell cultures and in vivo, activation of PPARγ by high doses (20 mg/kg/day) of TZDs has been reported to alter stem cell differentiation by promoting commitment of progenitor cells to the adipocytic lineage while inhibiting osteoblastogenesis. Here, we have examined the in vivo effects of low-dose rosiglitazone (3 mg/kg/day) on bone, administered to mice by gavage for 90 days. Rosiglitazone-treated mice had increased weight when compared with controls, with no significant alterations in serum levels of glucose, calcium or parathyroid hormone (PTH). Bone mineral density (BMD) at the lumbar vertebrae (L1–L4), ilium/sacrum, and total body was diminished by rosiglitazone treatment. Histologically, bone was characterized by decreased trabecular bone volume and increased marrow space with no significant change in bone marrow adipocity. Decreased osteoblast number and activity due to increased apoptotic death of osteoblasts and osteocytes was apparent while osteoclast parameters and serum levels of osteocalcin, alkaline phosphatase activity, and leptin were unaltered by rosiglitazone treatment. Therefore, the imbalance in bone remodeling that follows rosiglitazone administration arises from increased apoptotic death of osteogenic cells and diminished bone formation leading to the observed decrease in trabecular bone volume and BMD. These novel in vivo effects of TZDs on bone are of clinical relevance as patients with type 2 diabetes mellitus and other insulin resistant states treated with these agents may potentially be at increased risk of osteoporosis.


Diabetes ◽  
2011 ◽  
Vol 60 (10) ◽  
pp. 2617-2623 ◽  
Author(s):  
C. Morgantini ◽  
A. Natali ◽  
B. Boldrini ◽  
S. Imaizumi ◽  
M. Navab ◽  
...  

Author(s):  
Alla I. Potapovich ◽  
Tatyana O. Suhan ◽  
Olga A. Antipova ◽  
Vladimir A. Kostyuk

Studies using cell-free systems have shown that chelation of ferrous iron by rutin and formation of the complex (Rt – Fe) resulted in the appearance of site-specific pseudo-peroxidase activity against hydrogen peroxide, but does not affect the ligand’s ability to interact with peroxynitrite. Anti-inflammatory properties of rutin (Rt) and its complex with ferrous iron were studied in vitro under conditions of bacterial lipopolysaccharide (LPS)-induced inflammation in endothelial cells of the human umbilical vein (HUVEC). The Rt – Fe complex at a dose of 50 µmol/L was found to significantly reduce the level of LPS-induced mRNA expression of inflammatory mediators IL-6, IL-1B, IL-8, MCP1 and COX-2 and the level of secretion of IL-6 and IL-8 in the culture medium, while Rt under the same concentration was ineffective. Experiments performed in vivo indicate that prior administration of the Rt – Fe complex in a dose of 12.5 µmol/kg dramatically eliminated LPS-induced pyrogenic reaction of in Wistar rats. From the above data, it can be concluded that complexation with bivalent iron enhances of antioxidant properties of Rt, leads to appearance of anti-inflammatory activity and expands the area of its possible pharmacological use.


Author(s):  
Asif Choudhury ◽  
Deepak Kumar Jha ◽  
U. Rajashekhar

Background: Natural products are a valuable resource of novel bioactive metabolites and these products exist in which the anti-inflammatory activity. The present investigation studies the in vivo and in vitro anti-inflammatory activity of methanolic extract of Ficus hispida in rat’s model.Methods: Plant material was extracted with methanol in a Soxhlet extraction apparatus. Indomethacin was used as a standard drug here, which is a known potent inhibitor of PG synthesis. The carrageenin and histamine induced paw oedema were selected to represent models of acute inflammations. The test compounds and standard drugs were administered orally. After 60 minutes paw oedema was induced by giving 0.1 ml of 1% Carrageenan and 0.1 % histamine by sub-plantar administration. Paw volume-Plethysmometer by mercury displacement method, before and after 1 hr to 4 hours of carrageenan and histamine administration. Performed MTT-based cytotoxicity assay of the Ficus hispida on the RAW264.7 cell line to determine the IC50 and calculate the pro-inflammatory cytokines viz, IL-6, IL-1β and TNF-α and compared to the LPS control.Results: The result obtained from the in-vivo study shows that the Ficus hispida has significant anti- inflammatory activity in a dose dependent manner. This effect is similar to that produced by NSAIDS such as Indomethacin. The concentrations of IL-6, IL-1β and TNF-α, secreted by the cells after challenging with bacterial LPS (2 µg/ml) and subsequent treatment with 50 µg Ficus hispida has been found to reduce the production of all the three pro-inflammatory cytokines viz, IL-6, IL-1β and TNF-α as compared to the LPS control. The activity, in fact, is comparable to the standard NSAID Indomethacin.Conclusions: All these findings and phytoconstituents present in the extract could be the possible chemicals involved in the prevention of inflammations.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Nayab Ishrat ◽  
Hamda Khan ◽  
Om P. S. Patel ◽  
Abbas Ali Mahdi ◽  
Farina Mujeeb ◽  
...  

The dysregulation of glucose metabolism that includes the modification of biomolecules with the help of glycation reaction results in the formation of advanced glycation end products (AGEs). The formation of AGEs may activate receptors for advanced glycation end products which induce intracellular signaling, ultimately enhancing oxidative stress, a well-known contributor to type 2 diabetes mellitus. In addition, AGEs are possible therapeutic targets for the treatment of type 2 diabetes mellitus and its complications. This review article highlights the antioxidant, anti-inflammatory, and antidiabetic properties of the Nymphaea species, and the screening of such aquatic plants for antiglycation activity may provide a safer alternative to the adverse effects related to glucotoxicity. Since oxidation and glycation are relatively similar to each other, therefore, there is a possibility that the Nymphaea species may also have antiglycating properties because of its powerful antioxidant properties. Herbal products and their derivatives are the preeminent resources showing prominent medicinal properties for most of the chronic diseases including type 2 diabetes mellitus. Among these, the Nymphaea species has also shown elevated activity in scavenging free radicals. This species has a load of phytochemical constituents which shows various therapeutic and nutritional value including anti-inflammatory and antioxidant profiles. To the best of our knowledge, this is the first article highlighting the possibility of an antiglycation value of the Nymphaea species by inhibiting AGEs in mediation of type 2 diabetes mellitus. We hope that in the next few years, the clinical and therapeutic potential may be explored and highlight a better perspective on the Nymphaea species in the inhibition of AGEs and its associated diseases such as type 2 diabetes mellitus.


2014 ◽  
Vol 84 (1-2) ◽  
pp. 27-34 ◽  
Author(s):  
Nasser M. Al-Daghri ◽  
Khalid M. Alkharfy ◽  
Nasiruddin Khan ◽  
Hanan A. Alfawaz ◽  
Abdulrahman S. Al-Ajlan ◽  
...  

The aim of our study was to evaluate the effects of vitamin D supplementation on circulating levels of magnesium and selenium in patients with type 2 diabetes mellitus (T2DM). A total of 126 adult Saudi patients (55 men and 71 women, mean age 53.6 ± 10.7 years) with controlled T2DM were randomly recruited for the study. All subjects were given vitamin D3 tablets (2000 IU/day) for six months. Follow-up mean concentrations of serum 25-hydroxyvitamin D [25-(OH) vitamin D] significantly increased in both men (34.1 ± 12.4 to 57.8 ± 17.0 nmol/L) and women (35.7 ± 13.5 to 60.1 ± 18.5 nmol/L, p < 0.001), while levels of parathyroid hormone (PTH) decreased significantly in both men (1.6 ± 0.17 to 0.96 ± 0.10 pmol/L, p = 0.003) and women (1.6 ± 0.17 to 1.0 ± 0.14 pmol/L, p = 0.02). In addition, there was a significant increase in serum levels of selenium and magnesium in men and women (p-values < 0.001 and 0.04, respectively) after follow-up. In women, a significant correlation was observed between delta change (variables at six months-variable at baseline) of serum magnesium versus high-density lipoprotein (HDL)-cholesterol (r = 0.36, p = 0.006) and fasting glucose (r = - 0.33, p = 0.01). In men, there was a significant correlation between serum selenium and triglycerides (r = 0.32, p = 0.04). Vitamin D supplementation improves serum concentrations of magnesium and selenium in a gender-dependent manner, which in turn could affect several cardiometabolic parameters such as glucose and lipids.


2020 ◽  
Vol 17 ◽  
Author(s):  
Deepak Kumar Singh ◽  
Mayank Kulshreshtha ◽  
Yogesh Kumar ◽  
Pooja A Chawla ◽  
Akash Ved ◽  
...  

Background: The pyrazolines give the reactions of aliphatic derivatives, resembling unsaturated compounds in their behavior towards permanganate and nascent hydrogen. This nucleus has been associated with various biological activities including inflammatory. Thiazolinone is a heterocyclic compound that contains both sulfur and nitrogen atom with a carbonyl group in their structure.Thiazolinone and their derivatives have attracted continuing interest because of their various biological activities, such as anti-inflammatory, antimicrobial, anti-proliferative, antiviral, anticonvulsant etc. The aim of the research was to club pyrazoline nucleus with thiazolinone in order to have significantanti-inflammatory activity. The synthesized compounds were chemically characterized for the establishment of their chemical structures and to evaluate as anti-inflammatory agent. Method: In the present work, eight derivatives of substituted pyrazoline (PT1-PT8) were synthesized by a three step reaction.The compounds were subjected to spectral analysis by Infrared, Mass and Nuclear magnetic resonance spectroscopy and elemental analysis data. All the synthesized were evaluated for their in vivo anti-inflammatory activity. The synthesized derivatives were evaluated for their affinity towards target COX-1 and COX-2, using indomethacin as the reference compound molecular docking visualization through AutoDock Vina. Results: Compounds PT-1, PT-3, PT-4 and PT-8 exhibited significant anti-inflammatory activity at 3rd hour being 50.7%, 54.3%, 52.3% and 57% respectively closer to that of the standard drug indomethacin (61.9%).From selected anti-inflammatory targets, the synthesized derivatives exhibited better interaction with COX-1 and COX-2 receptor, where indomethacin showed docking score of -6.5 kJ/mol, compound PT-1 exhibited highest docking score of -9.1 kJ/mol for COX-1 and compound PT-8 having docking score of 9.4 kJ/mol for COX-2. Conclusion: It was concluded that synthesized derivatives have more interaction with COX-2 receptors in comparison to the COX-1 receptors because the docking score with COX-2 receptors were very good. It is concluded that the synthesized derivatives (PT-1 to PT-8) are potent COX-2 inhibitors.


Sign in / Sign up

Export Citation Format

Share Document