scholarly journals BAP1 Downregulates NRF2 Target Genes and Exerts Anti-Tumorigenic Effects by Deubiquitinating KEAP1 in Lung Adenocarcinoma

Antioxidants ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 114
Author(s):  
Jong-Su Kang ◽  
Le Ba Nam ◽  
Ok-Kyung Yoo ◽  
Kyeong Lee ◽  
Young-Ah Suh ◽  
...  

KELCH-ECH-associated protein 1 (KEAP1) is an adaptor protein of Cullin 3 (CUL3) E3 ubiquitin ligase that targets a redox sensitive transcription factor, NF-E2-related factor 2 (NRF2). BRCA1-associated protein 1 (BAP1) is a tumor suppressor and deubiquitinase whose mutations increase the risk of several types of familial cancers. In the present study, we have identified that BAP1 deubiquitinates KEAP1 by binding to the BTB domain. Lentiviral transduction of BAP1 decreased the expression of NRF2 target genes, suppressed the migration and invasion, and sensitized cisplatin-induced apoptosis in human lung adenocarcinoma (LUAD) A549 cells. Examination of the lung tissues in KrasG12D/+ mice demonstrated that the level of Bap1 and Keap1 mRNAs progressively decreases during lung tumor progression, and it is correlated with NRF2 activation and the inhibition of oxidative stress. Supporting this observation, lentiviral transduction of BAP1 decreased the growth of A549 xenografts in athymic nude mice. Transcriptome analysis of human lung tissues showed that the levels of Bap1 mRNA are significantly higher in normal samples than LUAD samples. Moreover, the expression of Bap1 mRNA is associated with a better survival of LUAD patients. Together, our study demonstrates that KEAP1 deubiquitination by BAP1 is novel tumor suppressive mechanism of LUAD.

2015 ◽  
Vol 10 (9) ◽  
pp. 1934578X1501000 ◽  
Author(s):  
Xuedan Guo ◽  
Aiping Liu ◽  
Hongxia Hua ◽  
Huifen Lu ◽  
Dandan Zhang ◽  
...  

Forkhead box M1 (FoxM1), a transcription factor of the Forkhead family, is demonstrated to be critical for proliferation, apoptosis, migration and invasion of lung cancer. In this study, we extensively investigated the anticancer effect of siomycin A, which was identified as an inhibitor of FoxM1 transcriptional activity, on human lung adenocarcinoma A549 cells. Our study indicated that treatment with siomycin A resulted in the suppression of FoxM1 expression, which consequently contributed to its effect of cell growth inhibition and cell apoptosis induction in A549 cells. Then the molecular mechanism of siomycin A's apoptotic action on A549 cells was further investigated. The results revealed that siomycin A induced apoptosis by influencing the downstream events of FoxM1, including inhibiting the expression of Bcl-2 and Mcl-1, as well as leading to caspase-3 cleavage. Taken together, our findings may be useful for understanding the mechanism of action of siomycin A on lung cancer cells and provide new insights into the possible application of such a compound in lung cancer therapy in the future.


Nutrients ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 1190 ◽  
Author(s):  
Hiroaki Eguchi ◽  
Toshiyuki Matsunaga ◽  
Satoshi Endo ◽  
Kenji Ichihara ◽  
Akira Ikari

Claudins (CLDNs) play crucial roles in the formation of tight junctions. We have reported that abnormal expression of CLDN2 confers chemoresistance in the spheroids of human lung adenocarcinoma A549 cells. A food composition, which can reduce CLDN2 expression, may function to prevent the malignant progression. Here, we found that ethanol extract of Brazilian green propolis (EBGP) and kaempferide, a major component of EBGP, decrease CLDN2 expression. In the two-dimensional culture model, EBGP decreased the tight junctional localization of CLDN2 without affecting that of zonula occludens-1, an adaptor protein, and enhanced paracellular permeability to doxorubicin, a cytotoxic anticancer drug. EBGP reduced hypoxic stress, and enhanced the accumulation and sensitivity of doxorubicin in the spheroid of A549 cells. Kaempferide dose-dependently decreased CLDN2 expression, although dihydrokaempferide and pinocembrin did not. The phosphorylation of Akt, a regulatory factor of CLDN2 expression, was inhibited by kaempferide but not by dihydrokaempferide. The 2,3-double bond in the C ring may be important to inhibit Akt. Kaempferide decreased the mRNA level and promoter activity of CLDN2, indicating that it inhibits the transcription of CLDN2. In accordance with EBGP, kaempferide decreased the tight junctional localization of CLDN2 and increased a paracellular permeability to doxorubicin, suggesting that it diminished the paracellular barrier to small molecules. In addition, kaempferide reduced hypoxic stress, and enhanced the accumulation and sensitivity of doxorubicin in the spheroids. In contrast, dihydrokaempferide did not improve the sensitivity to doxorubicin. Further study is needed using an animal model, but we suggest that natural foods abundantly containing kaempferide are candidates for the prevention of the chemoresistance of lung adenocarcinoma.


2021 ◽  
Vol 12 ◽  
Author(s):  
Fangfang Cai ◽  
Huangru Xu ◽  
Daolong Zha ◽  
Xiaoyang Wang ◽  
Ping Li ◽  
...  

Adenylate kinase 2 (AK2) is a wide-spread and highly conserved protein kinase whose main function is to catalyze the exchange of nucleotide phosphate groups. In this study, we showed that AK2 regulated tumor cell metastasis in lung adenocarcinoma. Positive expression of AK2 is related to lung adenocarcinoma progression and poor survival of patients. Knockdown or knockout of AK2 inhibited, while overexpression of AK2 promoted, human lung adenocarcinoma cell migration and invasion ability. Differential proteomics results showed that AK2 might be closely related to epithelial-mesenchymal transition (EMT). Further research indicated that AK2 regulated EMT occurrence through the Smad-dependent classical signaling pathways as measured by western blot and qPCR assays. Additionally, in vivo experiments showed that AK2-knockout in human lung tumor cells reduced their EMT-like features and formed fewer metastatic nodules both in liver and in lung tissues. In conclusion, we uncover a cancer metastasis-promoting role for AK2 and provide a rationale for targeting AK2 as a potential therapeutic approach for lung cancer.


2013 ◽  
Vol 41 (05) ◽  
pp. 1137-1152 ◽  
Author(s):  
Yun-Long Zhang ◽  
Rui Zhang ◽  
Hua-Li Xu ◽  
Xiao-Feng Yu ◽  
Shao-Chun Qu ◽  
...  

20(S)-Protopanaxadiol (PPD), an aglycone saponin ginsenoside isolated from Panax quinquefolium L, has been shown to inhibit the growth and proliferation in several cancer lines. However, the underlying molecular mechanisms remain poorly understood. In this study, we investigated the apoptosis-induced effects and the mechanism of 20(S)-PPD on human lung adenocarcinoma A549 cells. 20(S)-PPD showed a potent antiproliferative activity against A549 cells by triggering apoptosis. 20(S)-PPD-induced apoptosis was characterized by a dose-dependent loss of the mitochondrial membrane, release of cytochrome c, second mitochondria-derived activator of caspase (Smac) and apoptosis-inducing factor (AIF), activation of caspase-9/-3, and cleavage of poly (ADP-ribose) polymerase (PARP). Caspase-dependence was indicated by the ability of the pan-caspase inhibitor z-VAD-fmk to attenuate 20(S)-PPD-induced apoptosis. After treatment with 20(S)-PPD, the proportion of A549 cells at the G0/G1 phase increased, while cells at the S and G2/M phases decreased. Furthermore, 20(S)-PPD also triggered down-regulation of phosphorylated Akt (Ser473/Thr308) and glycogen synthase kinase 3β (GSK 3β). Knockdown of GSK 3β with siRNA promoted the apoptotic effects of 20(S)-PPD. These results revealed an unexpected mechanism of action for this unique ginsenoside: triggering a mitochondrial-mediated, caspase-dependent apoptosis via down-regulation of the PI3K/Akt signaling pathway in A549 cells. Our findings encourage further studies of 20(S)-PPD as a promising chemopreventive agent against lung cancer.


Sign in / Sign up

Export Citation Format

Share Document