scholarly journals Anti-Oxidant and Anti-Enzymatic Activities of Sea Buckthorn (Hippophaë rhamnoides L.) Fruits Modulated by Chemical Components

Antioxidants ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 618 ◽  
Author(s):  
Karolina Tkacz ◽  
Aneta Wojdyło ◽  
Igor Piotr Turkiewicz ◽  
Łukasz Bobak ◽  
Paulina Nowicka

The aim of this study was to analyze in vitro biological activities as anti-oxidant, anti-α-amylase, anti-α-glucosidase, anti-lipase, and anti-lipoxygenase activity, relative to bioactive components (phenolic acids, flavonols, xanthophylls, carotenes, esterified carotenoids, tocopherols, tocotrienols, and fatty acids) and the basic chemical composition (sugars, organic acid, dry matter, soluble solid, pH, titratable acidity, ash, pectins, and vitamin C) of Hippophaë rhamnoides berries. Six sea buckthorn cultivars commonly grown in Poland were analyzed including Aromatnaja, Botaniczeskaja-Lubitelskaja, Józef, Luczistaja, Moskwiczka, and Podarok Sadu. Berries contained 1.34–2.87 g of sugars and 0.96–4.22 g of organic acids in 100 g fresh weight, 468.60–901.11 mg of phenolic compounds, and 46.61–508.57 mg of carotenoids in 100 g dry mass. The fatty acid profile was established: palmitic > palmitoleic > oleic and linoleic > stearic and linolenic acids. The highest anti-oxidant (34.68 mmol Trolox/100 g dry mass) and anti-α-amylase potential (IC50 = 26.83 mg/mL) was determined in Aromatnaja, anti-α-glucosidase in Botaniczeskaja-Lubitelskaja (IC50 = 41.78 mg/mL), anti-lipase in Moskwiczka and Aromatnaja (average IC50 = 4.37 mg/mL), and anti-lipoxygenase in Aromatnaja and Podarok Sadu fruits (100% inhibition). The studied sea buckthorn berries may be a raw material for the development of functional foods and nutraceutical products rich in compounds with high biological activity.

2009 ◽  
Vol 52 (2) ◽  
pp. 58-64 ◽  
Author(s):  
Kyung-Min Kim ◽  
Min-Hee Park ◽  
Kyung-Hee Kim ◽  
Sang-Hyun Im ◽  
Yoo-Hwa Park ◽  
...  

Author(s):  
N. Makovics-Zsohár ◽  
A. Hegedűs ◽  
É. Stefanovits-Bányai ◽  
R. Rédei ◽  
N. Papp

Berries of sea buckthorn (Hippophae rhamnoides L.) are characterized by increasing popularity due to their presumable healtheffects. The aim of this study was to compare the antioxidant capacity and total polyphenolic content in the berries of six Hungarian grown sea buckthorn genotypes and characterize the genetic variability in this trait. The harvest time of sea buckthorn berries affects the antioxidant capacity and total phenolic contents in berries of three popular cultivars of German origin. Berries harvested in October had higher antioxidant capacity compared with those harvested one month later. The extent of the difference was genotype-specific. Our analysis revealed a nearly 3-fold difference between the lowest and highest antioxidant capacities of the 6 tested genotypes with ‘Leikora’ showing the highest ferric reducing antioxidant power and total phenolic content. The TEAC values ranged between 1.76 and 3.13 mmol Trolox/100g fresh weight with Pető 1 and ‘Frugana’ having the highest values. The results presented in this study demonstrated that Hippophae rhamnoides berries possess in vitro antioxidant activity strongly determined by genotype but also influenced by harvest time.


2003 ◽  
Vol 1 (1) ◽  
pp. 85-88 ◽  
Author(s):  
M. Uransanaa ◽  
◽  
D. Gerel ◽  
Ya. Jamyansan ◽  
Ts. Dash ◽  
...  

The wild sea buckthorn (Hippophae rhamnoides L) is distributed in Mongeiia along the basin of rivers and lakes, which disposed between high mountains in western and northern parts ofthe country. The wild sea buckthorn is a cold tolerant unique plant with beneficial value of medicinal and cosmetic products. About 7.2% of wild sea buckthorn berries belongs to seeds and the pratein in seeds composed 37.79%, while the protein in shells equal to 15.25%. Best extraction of protiens was successful at value of pH=l- 3 or pH=10-12. The soluble protein content ofthe whole proteins in seeds was 37.4% at the value of pH=1 and 63.85% at pH=12, while the shell proteins were 16.2% and 22.8%, respectively. The tan1 content of essential amino acids is composed about 43.32-45.04% of whole protein. ~ h e r ~ f ~it icean, be conclude that the sea buckthorn seeds are valuable resourse containing respectable amount of valuable proteins. Qn the other hand, seeds are undamageble during technological procedure and, therefore further precessing as raw material is advisable.


2018 ◽  
Vol 15 (2) ◽  
pp. 127-135 ◽  
Author(s):  
Parvesh Singh ◽  
Nomandla Ngcoya ◽  
Ramgopal Mopuri ◽  
Nagaraju Kerru ◽  
Neha Manhas ◽  
...  

Background: Diabetes Mellitus (DM) is a complex metabolic disease illustrated by abnormally high levels of plasma glucose or hyperglycaemia. Accordingly, several α-glucosidase inhibitors have been developed for the treatment of diabetes and other degenerative disorders. While, a coumarin ring has the privilege to represent numerous natural and synthetic compounds with a wide spectrum of biological activities e.g. anti-cancer, anti-HIV, anti-viral, anti-malarial, anti-microbial, anti-convulsant, anti-hypertensive properties. Besides this, coumarins have also shown potential to inhibit α-glucosidase leading to a generation of new promising antidiabetic agents. However, the testing of O-substituted coumarins for α-glucosidase inhibition has evaded the attention of medicinal chemists. Methods: For O-alkylation/acetylation reactions, the hydroxyl coumarins (A-B) initially activated by K2CO3 in dry DMF were reacted with variedly substituted haloalkanes at room temperature under nitrogen. The synthesized compounds were tested for their α-glucosidase (from Saccharomyces cerevisiae) inhibitory activity and anti-oxidant activity using DPPH radical scavenging activity. In silico docking simulations were conducted using CDocker module in DS (Accelrys) to explore the binding modes of the representative compounds in the catalytic site of α-glucosidase. Results: All the coumarin analogues (A1, B1, A2-A10, B2-B8) including their precursors (A-B) were evaluated for their in vitro α-glucosidase inhibition using acarbose as a standard inhibitor. All the mono O-alkylated coumarins (except A1) showed significant (p <0.05) α-glucosidase inhibition relative to the hydroxyl coumarin (A) with IC50 values ranging between 11.084±0.117 to 145.24± 29.22 µg/mL. Compound 7-(benzyloxy)-4, 5-dimethyl-2H-chromen-2-one (A9) bearing a benzyl group (Ph-CH2-) at position 7 showed a remarkable (p <0.05) increase in the activity (IC50 = 11.084±0.117 µg/mL), almost four-fold more than acarbose (IC50 = 40.578±5.999 µg/mL). The introduction of –NO2 group dramatically improved the anti-oxidant activity of coumarin, while the O-alkylation/acetylation decreased the activity. Conclusion: The present study describes the synthesis of functionalized coumarins and their evaluation for α-glucosidase inhibition and antioxidant activity under in vitro conditions. Based on IC50 data, the mono O-alkylated coumarins were observed to be stronger inhibitors of α-glucosidase with respect to their bis O-alkylated analogues. Coumarin (A9) bearing O-benzyloxy group displayed the strongest α-glucosidase inhibition, even higher than the standard inhibitor acarbose. The coumarin (A10) bearing –NO2 group showed the highest anti-oxidant activity amongst the synthesized compounds, almost comparable to the ascorbic acid. Finally, in silico docking simulations revealed the role of hydrogen bonding and hydrophobic forces in locking the compounds in catalytic site of α-glucosidase.


Sign in / Sign up

Export Citation Format

Share Document