scholarly journals Experiment on Cultivation Performance of Plant Fiber-Based Degradable Film in Paddy Field

2020 ◽  
Vol 10 (2) ◽  
pp. 495
Author(s):  
Xianglan Ming ◽  
Haitao Chen

To solve the problems of the damage of weed in paddy field on crop yield and quality, the impact of chemical herbicides on the ecological environment, and the soil pollution caused by plastic film mulching, the field-positioning test was carried out in 2015 to 2017. Taking Daohuaxiang 2 as the test material, three treatments (plant fiber-based degradable film, plastic film, and CK) were setup to investigate the effects of plant fiber-based degradable film on the weed inhibition, warming effect under mulching cultivation, rice yield, rice quality, and economic benefit. The results showed that compared with CK, the plant fiber-based degradable film and plastic film reduced the weed by 85.5% to 87.7% and 78.7% to 81.7%, respectively. Plant fiber-based degradable film mulching cultivation can increase the soil temperature of soil layer 0 to 0.1 m depth. In 2015 to 2017, rice yield with plant fiber-based degradable film increased by 8.71%, 7.53%, and 9.02%, respectively. Plant fiber-based degradable film can significantly reduce the hardness, increase its adhesion, and improve the eating quality of rice. Different films mulching had a certain impact on crop economic benefit. During the developmental stage of the panicle, the plant fiber-based degradable film began to crack, and by the blossom fruit period, the degradation rate reached the grade of 3 or 4. Therefore, the use of plant fiber-based degradable film instead of plastic film can reduce the amount of weed under the membrane and create a more suitable soil temperature, which was conducive to rice yield and quality.

2020 ◽  
Vol 113 (3) ◽  
pp. 1248-1253
Author(s):  
Blake E Wilson ◽  
Michael J Stout

Abstract The rice stink bug, Oebalus pugnax (F.), is the most important pest of headed rice, Oryza sativa L., in the United States. Numerous studies have attempted to quantify the impact of O. pugnax feeding on rice yield and grain quality, but these studies have often produced conflicting results. Across mid-south U.S. rice, thresholds based on sweep net sampling are used to determine the need for insecticide applications, but few studies have related sweep net captures to rice quality parameters. Field trials were conducted in Louisiana in 2015 and 2016 that used different rates of insecticides to establish rice plots with mean O. pugnax infestations ranging from 0.8 to 24.6 insects per 10 sweeps. Insecticide applications improved panicle weight and head yields as well as decreased percentage peck. A series of linear regressions examined relationships between O. pugnax captures and rice yield and quality parameters, including panicle weight, head yield (% whole kernels), and peck (discolored grains). Mean O. pugnax sweep net captures across all sampling dates in both years were significantly and negatively correlated to panicle weight and head yield and positively correlated to percentage peck. Peck was negatively correlated with head yield. Results from sampling at different maturity stages indicate sweep net captures at grain fill and soft dough stages had the greatest influence on rice yield and quality parameters, respectively. Further research into impacts of milling quality reductions on farm revenue and the influence of cumulative infestations over grain development is needed to improve economic thresholds for O. pugnax in rice.


2020 ◽  
Vol 114 ◽  
pp. 126007
Author(s):  
Guangbin Zhang ◽  
Yuting Yang ◽  
Qiong Huang ◽  
Jing Ma ◽  
Haiyang Yu ◽  
...  

Weed Science ◽  
2017 ◽  
Vol 66 (1) ◽  
pp. 134-141 ◽  
Author(s):  
Xin Yang ◽  
Wenhai Mi ◽  
Xiaoli Tan ◽  
Lianghuan Wu ◽  
Vladimir G. Onipchenko

The effects of non-flooded plastic film mulching cultivation (PM) and polymer-coated urea (PCU) on rice yield, soil properties, and weed diversity were investigated in experimental plots of rice monoculture in Lanxi, China. The combination of PM and PCU increased rice yield. Compared with traditional flooded cultivation, under PM, soil pH remained higher, but decreased soil organic matter, total nitrogen, available phosphorus, and exchangeable potassium in the 0- to 10-cm soil layer. Soil fertility influenced winter weed communities, with hairy bittercress, Asian mazus, and shortawn foxtail being the most abundant species. Multivariate analysis indicated that changes in the winter weed species diversity were primarily due to exchangeable potassium. PCU had no significant influence on weed diversity, while plots without nitrogen fertilizer had higher spring-germinating weed density.


2014 ◽  
Vol 22 (3) ◽  
pp. 210-216 ◽  
Author(s):  
Dong Won Kim ◽  
Jong Yeob Kim ◽  
Dong Hyun You ◽  
Chang Su Kim ◽  
Hee Jun Kim ◽  
...  

2021 ◽  
Author(s):  
Yinhao Xue ◽  
Tuo Jin ◽  
Chengyu Gao ◽  
Chongxiao Li ◽  
Tao Zhou ◽  
...  

Abstract The spread of biodegradable plastic film (BDFs) not only increase grain yield but also reduce the environmental pollution from plastic film to a large extent. Soil microbes have been considered to be involved in biodegradation processes. However, the study of microbes diversity in soil mulched with biodegradable plastic film remains limited. Here, we compared the diversity of microbes between soils with biodegradable film and non-biodegradable film (NBDF) mulch. The results showed that BDFs affected on the soil quality parameters, such as total C, P and NH4+-N, but also on the microbes species richness (ACE; Chao1) and diversity (Simpson index; Shannon index). In terms of dominant phyla and genera, BDFs and NBDF can influence the abundance of disparate species. Furthermore, BDFs could also contribute to improve the richness of the important functional bacterial groups in soil, e.g. Pedomicrobium and Comamonas, both of which have been found to be involved in the degradation of plastic residues in soil. Finally, we found that BDFs improved the transformation of nitrogen through increased significantly the abundances of Nitrobacter and Nitrospira. Our results highlight the impact of BDFs mulch on the abundance of functional bacteria in the soil.


Author(s):  
Vijay P. Singh ◽  
Rajkumar Jat ◽  
Virendra Kumar ◽  
Ravinder Singh

Apart from the various innovations and technologies developed, productivity of most of the fruit crops in India remains at a lower level when compared to the major producers and developed countries. In the present era of health awareness, demand of the quality fruits, classified as protective foods, has increased globally. The ever-growing demand for the quality fruits and market competition has been compelling the farmers to produce more but quality fruits. Use of mulches is an age old practice and also one the cheapest methods under protected cultivation technologies which could help the orchardists to increase the production with higher quality. Looking to the several biotic and abiotic challenges in fruit production, adoption of mulching technique at large scale might be helpful to mitigate several problems considering the advantages of mulching. Several studies have shown that mulching in fruit crops has positive impact on soil moisture status, soil temperature along with weed suppression thus on rhizosphere of the plants. These rhizospheric conditions favour the vegetative as well as yield and quality parameters of the fruit crops. In this paper, an attempt has been made to review the impact of mulching on floor management (soil moisture status, soil temperature and weed suppression) as well as growth, yield and quality characteristics in fruit crops with the help of appropriate findings available in literature.


2017 ◽  
Author(s):  
Guanghui Ming ◽  
Hongchang Hu ◽  
Fuqiang Tian ◽  
Zhenyang Peng ◽  
Pengju Yang ◽  
...  

Abstract. Plastic film mulching (PFM) has been widely used for saving water and improving yield around the world, particularly in arid areas. However, the effect of PFM in agriculture on soil respiration is still unclear, and this effect may be confounded with irrigation and precipitation. To detect the effects of PFM, irrigation and precipitation on the temporal and spatial variations in soil respiration, plastic mulched and non-mulched drip irrigation contrast experiments were conducted in the arid area of the Xinjiang Uygur Autonomous Region, Northwest China. PFM generated more complicated spatial heterogeneity in the microclimate with increased albedo, improved soil temperature, soil moisture and crop growth, and led to the stronger spatial heterogeneity of the soil respiration. The soil respiration in the plant holes was larger than in the furrows, and plastic mulch itself can emit up to 2.75 μmol m−2 s−1 CO2, which indicates that furrows, plant holes and plastic mulch were the important pathways for CO2 emissions in the mulched field. Frequent irrigation and precipitation made the soil respiration much more dynamic and fluctuated. The sensitivity of the soil respiration to soil temperature was weakened by extreme variations in the soil moisture with lower correlation and Q10 values. In the wetting-drying cycle, both irrigation and precipitation restrained the soil respiration at a high soil water content (SWC) with a threshold of 60 % water-filled pore space (WFP) in the furrows and 50 % WFP in the ridges, and the restrain effect decreased gradually with the depleting of soil moisture. The accumulated soil respiration calculated from the area ratio of the different parts in the furrows and ridges in the mulched field were both larger than in the non-mulched field during the growing season. However, this magnitude decreased with increasing precipitation over three experimental years. It was speculated that the effect of drip irrigation on the soil respiration was primarily on the ridges while the effect of precipitation mostly concentrated in the furrows and ridges in the non-mulched field because of the mulch barrier. Therefore, the precipitation accelerated more respiration in the mulched than in the non-mulched field. The difference in soil respiration between the mulched and non-mulched fields was observed to have a positive correlation with precipitation per the findings of other studies. In a humid climate with much more precipitation, soil respiration in the non-mulched field can also exceed that of the mulched field and explains why certain studies concluded that plastic mulch decreased soil respiration. The above results indicate that both irrigation and precipitation alter soil respiration and this effect can be modified by plastic mulch. Therefore, whether the PFM increases soil respiration compared to a non-mulched field largely depends on precipitation in the field.


Sign in / Sign up

Export Citation Format

Share Document