scholarly journals Coupled Thermo-Hydro-Mechanical Analysis of Valley Narrowing Deformation of High Arch Dam: A Case Study of the Xiluodu Project in China

2020 ◽  
Vol 10 (2) ◽  
pp. 524 ◽  
Author(s):  
Tao Yin ◽  
Qingbin Li ◽  
Yu Hu ◽  
Sanda Yu ◽  
Guohe Liang

General studies examining reservoir bank deformation during its impoundment primarily consider the coupling effect between the seepage field and the stress field, but thermal field variation in the bedrock and its effect are rarely considered. In this paper, a case study concerning a 285.5 m high arch dam project, where a valley narrowing deformation occurs after the initial impoundment, is implemented. An analysis of in situ measurement is given to interpret the causes of the unique hydro-thermal phenomenon of the project. Possible reasons for the valley narrowing deformation pattern are discussed. A numerical model based on the thermo-hydro-mechanical (THM) coupling theory of porous medium is used to calculate the evolution processes of the thermal, seepage, and stress fields of the area after impoundment of the reservoir. The simulated deformation trend and pattern of the river valley are consistent with the monitoring data. The results demonstrate that water infiltration after impounding cools the bedrock and the temperature decrease makes the bedrock contract, which induces the narrowing deformation of the valley. Factor analysis of the hydrothermal field shows that temperature variation is the main cause of long-term deformation. Thus, it shall be considered as a key factor in terms of structural safety assessment. Furthermore, sensitivity analysis of the hydraulic conductivities of rock strata suggests that future development of the deformation can be eased off if the anti-seepage method is adopted on the bedrock.

2015 ◽  
Vol 8 (11) ◽  
pp. 9023-9041 ◽  
Author(s):  
Danni Luo ◽  
Peng Lin ◽  
Qingbin Li ◽  
Dong Zheng ◽  
Hongyuan Liu

2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Yantao Zhu ◽  
Chongshi Gu ◽  
Erfeng Zhao ◽  
Jintao Song ◽  
Zhiyun Guo

The establishment of a structural safety monitoring model of a dam is necessary for the evaluation of the dam’s deformation status. The structural safety monitoring method based on the monitoring data is widely used in traditional research. On the basis of the analysis of the high arch dam’s deformation principles, this study proposes a structural safety monitoring method derived from the dam deformation monitoring data. The method first analyzes and establishes the spatial and temporal distribution of high arch dam’s safety monitoring, overcoming the standard artificial bee colony (ABC) algorithm’s shortcoming of easily falling into the local optimum by adopting the adaptive proportion and average Euclidean distance afterwards. The improved ABC algorithm is used to optimize the backpropagation (BP) neural network’s initial weight and threshold. The application example proves that ABC-BP model’s improvement method is important for the establishment of a high arch deformation safety monitoring model and can effectively improve the model’s fitting and forecasting ability. This method provides a reference for the establishment of a structural safety monitoring model of dam and provides guidance for the establishment of a forecasting model in other fields.


2013 ◽  
Vol 3 (3) ◽  
Author(s):  
Mohammad Hariri-Ardebili ◽  
Hasan Mirzabozorg ◽  
M. Kianoush

AbstractDam-reservoir interaction is one of the classic coupled problems in which two various environments with different physical characteristics are in contact with each other on interface boundary. Consideration of such interaction is important in design of new dams as well as on safety evaluation of the existing ones. In the present study, the effect of hydrodynamic pressures at various reservoir operational levels on seismic behavior of an arch dam is investigated. Dez ultra-high arch dam in Iran was selected as case study and all contraction and peripheral joints were simulated using node-to-node contact elements which have the ability of opening/closing and tangential movement. In addition, stage construction effects including joint grouting based on available construction reports were considered. The reservoir was assumed to be compressible and the foundation rock was modeled to account for its flexibility. The TABAS earthquake record was used to excite the finite element model of dam-reservoir-foundation system. It was found that dam-reservoir interaction has significant structural effects on the system and generally, operating the considered arch dam at different water levels can highly affects the distribution of the crack prone area under the maximum credible earthquake.


2021 ◽  
Vol 826 (1) ◽  
pp. 012035
Author(s):  
Yuchen Fu ◽  
Yaosheng Tan ◽  
Chunfeng Liu ◽  
Lei Pei ◽  
Yajun Wang ◽  
...  

2021 ◽  
Vol 28 (1) ◽  
pp. 426-436
Author(s):  
Zelin Ding ◽  
Xuanyi Zhu ◽  
Hongyang Zhang ◽  
Hanlin Ban ◽  
Yuan Chen

Abstract Geological conditions play a decisive role in the stability of arch dam engineering, and the asymmetric geological conditions of the abutment have a very negative impact on the safety of the arch dam. This article takes Lizhou arch dam as the research object, and determines that the arch dam is preliminarily affected by the geological asymmetric characteristics. Through the geomechanical model test method, the overload failure test of the Lizhou arch dam was carried out, and the resistance body, the instability deformation of the structural plane of the two dam abutments, and the influence of each structural plane on the dam body are obtained, and the safety factor is determined. According to the test results under the condition of asymmetric foundation of arch dam, for the structural plane which affects the geological asymmetry of the arch dam, the corresponding reinforcement measures are carried out. The feasibility of the reinforcement scheme is verified by the finite element method, and the safety factor after reinforcement is obtained. According to the results, it is suggested that some engineering measures can be taken to reduce the geological asymmetry between the two banks and ensure the safe and stable operation of the arch dam in the future.


Polymers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 1737
Author(s):  
Milan Banić ◽  
Dušan Stamenković ◽  
Aleksandar Miltenović ◽  
Dragan Jovanović ◽  
Milan Tica

The selection of a rubber compound has a determining influence on the final characteristics of rubber-metal springs. Therefore, the correct selection of a rubber compound is a key factor for development of rubber-metal vibration isolation springs with required characteristics. The procedure for the selection of the rubber compound for vibration isolation of rubber-metal springs has been proposed, so that the rubber-metal elements have the necessary characteristics, especially in terms of deflection. The procedure is based on numerical simulation of spring deflection with Bergström-Boyce constitutive model in virtual experiment, with a goal to determine which parameters of the constitutive model will lead to spring required deflection. The procedure was verified by case study defined to select rubber compound for a rubber–metal spring used in railway engineering.


2014 ◽  
Vol 578-579 ◽  
pp. 964-967
Author(s):  
Zhi Qiang Wang ◽  
Wen Biao Liu

The brittle failure finite element method is widely used in arch dam safety evaluation, but it also has some problems, the concrete strength criterion is different, the dam failure range is different. This article first introduces brittle failure constitutive relation and three strength criterions, then takes a high arch dam as an example to compute, obtains some conclusions that the relative failure range of foundation plane corresponds to blaxial strength criterion is slightly bigger than the result of uniaxial strength criterion, is almost the same as the result of triaxial strength criterion. Because the influence of the third principal stress is compressed stress to the dam crack is taken into account under multiaxial strength criterion, therefore using multiaxial strength criterion is more reasonable.


Sign in / Sign up

Export Citation Format

Share Document