scholarly journals Optimal Design of the Vertical Earthing with Electrodes Arranged in Line

2020 ◽  
Vol 10 (3) ◽  
pp. 1177
Author(s):  
Sorin Gheorghe Pavel ◽  
Virgil Maier ◽  
Claudiu Ciorca ◽  
Horia Gheorghe Beleiu ◽  
Iulian Birou

The design methods of earthing from standards recommend the choice of electrode lengths and propose that the distances between electrodes to be 1–3 times larger than their length. The number of electrodes is determined from the condition of achieving the design earth resistance, while the design ends with the choice of one of the variants. This paper presents the methodology for calculating the earthing system with cylindrical, vertical electrodes arranged in a line. The main variables are the length and the number of earth electrodes, as well as the distance between adjacent ones. Firstly, a set of technologically advantageous values for the earth electrode length is established (e.g., 10 values). For each value of the electrode length and different numbers of electrodes (e.g., 11 values), the distance between adjacent electrodes is determined (e.g., for 110 cases), which leads to the design value resistance. Finally, optimal solutions are identified based on the five optimal applied criteria. The proposed optimal criteria for earthing design are the footprint area, the total earthing volume, the total dispersion surface, the total metal mass, and the investment costs. Comparing the optimal solutions with other technically possible solutions clearly highlights substantial savings concerning space, material, and cost.

2019 ◽  
pp. 109-115
Author(s):  
Didmanidze Ibraim ◽  
Donadze Mikheil

The article deals with such an important selection of the elements of electronic scheme of the given configuration, when the certain requirements of technical task are satisfied and at the same time the selected optimality criteria reach the extreme value. The gives task has been solved by the method of one-criterion optimization, in particular, the method of center gravity. To formalize the given scheme we have compiled a mathematical model of optimization, which considers the requirements of technical task. The optimal design task of the presented electronic scheme was brought to the task of multi criteria optimization. The computational experiments have been resulted in the Pareto-optimal solutions, from which there was selected a compromise on that corresponds to the minimum capacity, required by the scheme. According to the optimal values of resistors, we have conducted a computerized analysis of the transient process of the given electronic scheme with the help of a computer program Electronics Workbench.


2019 ◽  
Vol 111 ◽  
pp. 06006 ◽  
Author(s):  
Matteo Bilardo ◽  
Maria Ferrara ◽  
Enrico Fabrizio

In Europe, the second recast of EPBD promotes long-term strategies to accelerate the path to nZEBs, fostering the cost-optimized building design already suggested in the EPBD first recast. Since the nZEB design is a complex optimization problem that is subjected to uncertainty in its boundary conditions (climate, technologies, market, ...), it is necessary to guarantee the resilience of the NZEB optimal design to possible variations of future scenarios, especially as regards the climate change. This work applies the new EdeSSOpt methodology (Energy Demand and Supply Simultaneous Optimization) developed by the Authors aiming at investigating the variation of the cost-optimized multi-family building design in different Italian future climate scenarios, therefore considering parameters related to the building envelope, energy systems and renewable energy sources. The method is implemented into the TRNSYS® (energy model), GenOpt (optimizer) and WeatherShift® (future climate scenario generator) tools. The resulting cost-optimal solutions in future scenarios are related to a lower global cost and a decreased total primary energy consumption. Beyond the future trends of such performance indexes, the fact that most of technical solutions associated with the optimal solutions have not changed with the studied climate scenarios, indicates a certain resilience of the optimal design variables facing climate change.


2011 ◽  
Vol 27 (7) ◽  
pp. 075002 ◽  
Author(s):  
H T Banks ◽  
K Holm ◽  
F Kappel

Author(s):  
Sam Noble ◽  
K Kurien Issac

We address the problem of improving mobility of rovers with rocker-bogie suspension. Friction and torque requirements for climbing a single step were considered as performance parameters. The main contribution of the paper is an improved formulation for rover optimization using smooth functions, which enables use of powerful gradient based nonlinear programming (NLP) solvers for finding solutions. Our formulation does not have certain shortcomings present in some earlier formulations. We first formulate the problem of determining optimal torques to be applied to the wheels to minimize (a) friction requirement, and (b) torque requirement, and obtain demonstrably optimal solutions. We then formulate the problem of optimal design of the rover itself. Our solution for climbing a step of height two times the wheel radius is 13% better than that of the nominal rover. This solution is verified to be a local minimum by checking Karush–Kuhn–Tucker conditions. Optimal solutions were obtained for both forward and backward climbing. We show that some earlier formulations cannot obtain optimal solutions in certain situations. We also obtained optimal design for climbing steps of three different heights, with a friction requirement which is 15% lower than that of the nominal rover.


Author(s):  
Nobuhito Oka ◽  
Masato Furukawa ◽  
Kazutoyo Yamada ◽  
Akihiro Oka ◽  
Yasushi Kurokawa

The new type of shrouded wind turbine called “wind-lens turbine” has been developed. The wind-lens turbine has a brimmed diffuser called “wind-lens”, by which the wind concentration on the turbine blade and the significant enhancement of the turbine output can be achieved. A simultaneous optimization method for the aerodynamic design of rotor blade and wind-lens has been developed. The present optimal design method is based on a genetic algorithm (GA) which enables multi objective aerodynamic optimization. In the present study, aerodynamic performances and flow fields of the Pareto optimal solutions of wind-lens turbines designed by the present optimal design method have been investigated by wind-tunnel tests and three-dimensional Reynolds averaged Navier-Stokes (RANS) analyses. Output power coefficients obtained from the wind-tunnel tests in the optimal wind-lens turbine exceeded the Betz limit, which is the performance limitation for bare wind turbines. The numerical results and the experimental results show that the suppression of flow separations in the diffuser is important to achieve significant improvement in aerodynamic performances. As a result, it is found that the aerodynamic performance of wind-lens turbine is significantly affected by the interrelationship between the internal and external flow fields around the wind-lens.


Data in Brief ◽  
2016 ◽  
Vol 9 ◽  
pp. 846-849 ◽  
Author(s):  
Ilaria Zacà ◽  
Giuliano Tornese ◽  
Cristina Baglivo ◽  
Paolo Maria Congedo ◽  
Delia D’Agostino

2019 ◽  
Author(s):  
Katarzyna Rzeszut ◽  
Tomasz Szumigała

2012 ◽  
Vol 94 (6) ◽  
pp. 2087-2096 ◽  
Author(s):  
P. Francescato ◽  
A. Gillet ◽  
D. Leh ◽  
P. Saffré

Sign in / Sign up

Export Citation Format

Share Document