scholarly journals D-RoF and A-RoF Interfaces in an All-Optical Fronthaul of 5G Mobile Systems

2020 ◽  
Vol 10 (4) ◽  
pp. 1212 ◽  
Author(s):  
Zbigniew Zakrzewski

This paper presents a solution for enabling the coexistence of digitized radio-over-fiber (D-RoF) and analog radio-over-fiber (A-RoF) interfaces operating in the optical fronthaul of 5G mobile systems. In the first section, we formulate the need to introduce new technologies to the cloud/centralized radio access network (C-RAN) (Next Generation RAN (NG-RAN) in 5G systems). A proposition of construction of the optical remote radio head (O-RRH)/gNodeB—distributed unit (gNB-DU), which will enable the operation of digital Splits/Options and new proposed analog Splits/Options, is presented. The methods performing calculations of bit rate and optical bandwidth demand in the fronthaul/midhaul, with reference to the parameters of the new-radio-release-15 (NR-Rel-15) wireless interface and subsequent releases, towards the next generations, are presented. The bandwidth demands were calculated for selected Splits/Options, and the results are shown in diagrams. A special section is devoted to description of the results achieved and presenting potential applications of the proposed construction of a radio-photonic device as well as new Splits/Options of the next generation fronthaul/midhaul.

Author(s):  
Thiago R. Raddo ◽  
Simon Rommel ◽  
Bruno Cimoli ◽  
Chris Vagionas ◽  
Diego Perez-Galacho ◽  
...  

AbstractThe sixth generation (6G) mobile systems will create new markets, services, and industries making possible a plethora of new opportunities and solutions. Commercially successful rollouts will involve scaling enabling technologies, such as cloud radio access networks, virtualization, and artificial intelligence. This paper addresses the principal technologies in the transition towards next generation mobile networks. The convergence of 6G key-performance indicators along with evaluation methodologies and use cases are also addressed. Free-space optics, Terahertz systems, photonic integrated circuits, softwarization, massive multiple-input multiple-output signaling, and multi-core fibers, are among the technologies identified and discussed. Finally, some of these technologies are showcased in an experimental demonstration of a mobile fronthaul system based on millimeter 5G NR OFDM signaling compliant with 3GPP Rel. 15. The signals are generated by a bespoke 5G baseband unit and transmitted through both a 10 km prototype multi-core fiber and 4 m wireless V-band link using a pair of directional 60 GHz antennas with 10° beamwidth. Results shown that the 5G and beyond fronthaul system can successfully transmit signals with both wide bandwidth (up to 800 MHz) and fully centralized signal processing. As a result, this system can support large capacity and accommodate several simultaneous users as a key candidate for next generation mobile networks. Thus, these technologies will be needed for fully integrated, heterogeneous solutions to benefit from hardware commoditization and softwarization. They will ensure the ultimate user experience, while also anticipating the quality-of-service demands that future applications and services will put on 6G networks.


Author(s):  
Josef Urban ◽  
Dave Wisely ◽  
Edgar Bolinth ◽  
Georg Neureiter ◽  
Mika Liljeberg ◽  
...  

2021 ◽  
Author(s):  
Mariam Ishtiaq ◽  
Nasir Saeed ◽  
Muhammad Asif Khan

Edge computing is one of the key driving forces to enable Beyond 5G (B5G) and 6G networks. Due to the unprecedented increase in traffic volumes and computation demands of future networks, Multi-access Edge Computing (MEC) is considered as a promising solution to provide cloud-computing capabilities within the radio access network (RAN) closer to the end users. There has been a huge amount of research on MEC and its potential applications; however, very little has been said about the key factors of MEC deployment to meet the diverse demands of future applications. In this article, we present key considerations for edge deployments in B5G/6G networks including edge architecture, server location and capacity, user density, security etc. We further provide state-of-the-art edge-centric services in future B5G/6G networks. Lastly, we present some interesting insights and open research problems in edge computing for 6G networks.


Sign in / Sign up

Export Citation Format

Share Document