scholarly journals Effect Range of the Material Constraint in Different Strength Mismatched Laboratory Specimens

2020 ◽  
Vol 10 (7) ◽  
pp. 2434 ◽  
Author(s):  
Yue Dai ◽  
Jie Yang ◽  
Haofeng Chen

Different strength mismatched laboratory specimens that contain the compact tension (CT), single edge-notched tensile (SENT), and central-cracked tension (CCT) specimens with various specimen geometries, loading configurations, and initial cracks were selected to investigate the effect range of the material constraint systematically. The results showed that the effect range of material constraint exists in all the strength mismatched specimens and structures. The numerical value of the effect range is influenced by the geometry constraint. The high geometry constraint reduces the effect range of material constraint. When a material is located outside the effect range of material constraint, the fracture resistance curves and crack propagation paths of the specimens and structures are no longer influenced by the mechanical properties of the material. In addition, an interaction exists between the geometry constraint and material constraint. The high geometry constraint strengthens the effect of material constraint, whereas the fracture resistance curve and crack propagation path are insensitive to the material constraint under the low geometry constraint. The results in this study may provide scientific support for the structure integrity assessment and the design of strength mismatched structures.

2019 ◽  
Vol 211 ◽  
pp. 47-60 ◽  
Author(s):  
Tianyao Liu ◽  
Xudong Qian ◽  
Wei Wang ◽  
Yiyi Chen

Author(s):  
Mauri´cio Carvalho Silva ◽  
Eduardo Hippert ◽  
Claudio Ruggieri

This work presents an investigation of the ductile tearing properties for API 5L X70 and X80 pipeline steels using experimentally measured crack growth resistance curves (J-R curves). Testing of the pipeline steels employed compact tension (C(T)) fracture specimens to determine the J-R curves based upon the unloading compliance method using a single specimen technique in accordance with the ASTM E1820 standard procedure. Conventional tensile tests and Charpy V-Notch tests were also performed to determine the mechanical and impact properties for the tested materials. Severe splitting running parallel with the crack propagation path with varied lengths was observed in all tested fracture specimens, particularly for the API X80 material. The occurrence of splits makes the determination of JIc and resistance curves more difficult, as delamination of interfaces positioned normal to the crack front decreases the effective thickness of the test piece, inducing plane stress conditions deep inside the specimen. This experimental characterization provides additional toughness and mechanical data against which the general behavior of X70 and X80 class pipeline steel can be compared.


Author(s):  
Chris San Marchi ◽  
Brian P. Somerday ◽  
Kevin A. Nibur ◽  
Douglas G. Stalheim ◽  
Todd Boggess ◽  
...  

Gaseous hydrogen is an alternative to petroleum-based fuels, but it is known to significantly reduce the fatigue and fracture resistance of steels. Steels are commonly used for containment and distribution of gaseous hydrogen, albeit under conservative operating conditions (i.e., large safety factors) to mitigate so-called gaseous hydrogen embrittlement. Economical methods of distributing gaseous hydrogen (such as using existing pipeline infrastructure) are necessary to make hydrogen fuel competitive with alternatives. The effects of gaseous hydrogen on fracture resistance and fatigue resistance of pipeline steels, however, has not been comprehensively evaluated and this data is necessary for structural integrity assessment in gaseous hydrogen environments. In addition, existing standardized test methods for environment assisted cracking under sustained load appear to be inadequate to characterize low-strength steels (such as pipeline steels) exposed to relevant gaseous hydrogen environments. In this study, the principles of fracture mechanics are used to compare the fracture and fatigue performance of two pipeline steels in high-purity gaseous hydrogen at two pressures: 5.5 MPa and 21 MPa. In particular, elastic-plastic fracture toughness and fatigue crack growth rates were measured using the compact tension geometry and a pressure vessel designed for testing materials while exposed to gaseous hydrogen.


2004 ◽  
Vol 261-263 ◽  
pp. 159-164 ◽  
Author(s):  
Jae Sil Park ◽  
Chang Sung Seok

In order to perform elastic-plastic fracture mechanical analyses, fracture resistance curves for concerned materials are required. A standard CT specimen was used to obtain fracture resistance curves. However the fracture resistance curve by the standard CT specimen was very conservative to evaluate the integrity of the structure. Also the fracture resistance curve was affected by the specimen geometry, crack plane orientation, reverse cyclic loading and dynamic strain aging. The objective of this paper is to be certain the conservativeness of the fracture resistance curve by the standard CT specimen. For these purpose, fracture tests using the real-scale pipe specimen and standard CT specimen test were performed. A 4-point bending jig was manufactured for the pipe test and the direct current potential drop method was used to measure the crack extension and the length for the pipe test. From the result of the pipe and the standard CT specimen tests, it was observed that the fracture resistance curve of the standard CT specimen test was conservative compare to that of the pipe specimen test.


2020 ◽  
Vol 10 (4) ◽  
pp. 1374
Author(s):  
Lin Su ◽  
Jie Xu ◽  
Wei Song ◽  
Lingyu Chu ◽  
Hanlin Gao ◽  
...  

The effect of strength mismatch (ratio between the yield stress of weld metal and base metal, My) on the ductile crack growth resistance of welding pipe was numerically analyzed. The ductile fracture behavior of welding pipe was determined while using the single edge notched bending (SENB) and single edge notched tension (SENT) specimens, as well as axisymmetric models of circumferentially cracked pipes for comparison. Crack growth resistance curves (as denoted by crack tip opening displacement-resistance (CTOD-R curve) have been computed using the complete Gurson model. A so-called CTOD-Q-M formulation was proposed to calculate the weld mismatch constraint M. It has been shown that the fracture resistance curves significantly increase with the increase of the mismatch ratio. As for SENT and pipe, the larger My causes the lower mismatch constraint M, which leads to the higher fracture toughness and crack growth resistance curves. When compared with the standard SENB, the SENT specimen and the cracked pipe have a more similar fracture resistance behavior. The results present grounds for justification of usage of SENT specimens in fracture assessment of welding cracked pipes as an alternative to the traditional conservative SENB specimens.


1977 ◽  
Vol 12 (3) ◽  
pp. 167-179 ◽  
Author(s):  
M P Harper ◽  
E G Ellison

The applicability of the C∗ parameter for the prediction of creep crack propagation rates is considered. A new method for estimating C∗ is presented, the results from which show good agreement with those from an existing technique. Experimental results from creep crack growth tests, conducted on a 1 Cr Mo V steel using both compact tension and single edge notch bend specimens, indicate that good correlation with C∗ is obtained once the effects of stress redistribution become negligible. Finally, comparisons are drawn between C∗ and other possible correlating parameters, and the limitations of each approach are discussed.


2021 ◽  
Vol 9 (3) ◽  
pp. 271-280 ◽  
Author(s):  
A. Bahmani ◽  
S. Nemati

The influence of loading type on tensile and tearing fracture resistance of ballast rock was assessed using edge-notched diametrically compressed disc (ENDC) and edge-notched disc bend (ENDB) test geometries. The geometry of these two specimens was similar; however, their loading type (i.e., three-point bend and diametral compressive) was different affecting the geometry factors. The obtained pure tensile fracture toughness (KIc) using the ENDB test was higher than the ENDC test. In contrast to tensile fracture toughness, the pure tearing fracture toughness (KIIIc) in the ENDC test was higher than the ENDB fracture test. The obtained experimental data were explained in terms of crack propagation path, since two distinct trajectories were observed for both configurations under tearing deformation.


Author(s):  
Xian-Kui Zhu ◽  
Poh-Sang Lam

The J-integral resistance curve (or J-R curve) has been widely used as material property in fracture mechanics methods for structural integrity assessment. ASTM E1820 provides the standard fracture toughness test methods to measure JIc and J-R curves. The conventional J-R curve utilizes the J-integral parameter proposed by Rice [1] based on the deformation theory of plasticity. Due to crack-tip constraint effect, J-R curves of a material depend on specimen size, geometry type and crack length. In order to obtain size-independent resistance curves, Ernst [11] introduced a modified J-integral or Jm to minimize the size dependence and to characterize the resistance curve for large crack extensions beyond the limitation of deformation J-R curves. In the late 1980s and in the early 1990s, different experimental results showed the modified Jm-R curves were still size-dependent and may even behave worse than the deformation J-R curves. However, to date, the Jm-R curves are still regarded as “size-independent” in fracture mechanics analysis. To clarify this, the present paper gives a brief historical review of ductile resistance curves in terms of deformation J-integral and the modified Jm-integral, and evaluates the size dependence using experimental results for various steels and specimens, including A285 carbon steel and SENB specimens. A suggestion how to use the resistance curves is made accordingly.


Author(s):  
Xian-Kui Zhu ◽  
Tom McGaughy ◽  
Fabian Orth ◽  
Jon Jennings

Fracture resistance is an important material property and characterized by a J-integral resistance curve (J-R curve) or a crack-tip opening displacement (CTOD) resistance curve. ASTM standard specimens with deep cracks are subject to bending dominant forces, leading to high crack-tip constraint conditions and conservative fracture resistance curves. Actual cracks occurring in line pipes and welds are often shallow ones dominated by tensile forces, resulting in low constraint conditions. Shallow cracks have been shown to generate elevated fracture resistance curves in comparison to standard deep-crack results. To reduce the over-conservatism of standard resistance curves and to produce more realistic toughness properties to meet the needs of strain-based design approaches for pipelines, different procedures and technologies have been developed over the years to determine the low-constraint fracture resistance curves by use of the single edge-notched tension (SENT) specimens. This includes the multiple specimen method developed and standardized by DNV for J-R curve testing, the single specimen method developed by CanMet for J-R and CTOD-R curve testing, and the single-specimen method developed by ExxonMobil for CTOD-R curve testing. This paper delivers a technical review of existing fracture test methods using SENT specimens, and discusses the advantages and limitations of each method.


1977 ◽  
Vol 28 (1) ◽  
pp. 28-38 ◽  
Author(s):  
N J I Adams ◽  
H G Munro

SummaryFollowing a brief introduction, an examination is presented of the factors which define fracture toughness, resistance-curve relationships and the extent of stable crack extension in thin-sheet failure. Tests have been performed on three aluminium alloys to establish the variations in the shape of resistance curves, using both compliance-indicated and measured absolute values of crack length in compact tension specimens and centre crack sheets. The results show that both the toughness and the resistance curves of the two specimen types are different and that these differences cannot be explained wholly by consideration of crack tip plastic zone sizes.


Sign in / Sign up

Export Citation Format

Share Document