scholarly journals Adaptive Visual Servoing Control for Hoisting Positioning Under Disturbance Condition

2020 ◽  
Vol 10 (7) ◽  
pp. 2562
Author(s):  
Shenghao Tong ◽  
Ke Zhang ◽  
Huaitao Shi ◽  
Jinbao Zhao ◽  
Jie Sun

This paper proposes a visual servo scheme for hoisting positioning under disturbance conditions. In actual hoisting work, disturbances such as equipment and load vibration are inevitable, which brings challenges to the development of a visual servo for hoisting positioning. The main problems are as follows: (1) the correlation between visual error and disturbance is not considered or well resolved; (2) the disturbance has a great influence on the control stability, but it is difficult to model. At present, there is no detailed research on the above problems. In this paper, the visual error is defined by the image error of the feedback signal based on dynamic equations containing disturbances. An adaptive sliding mode control algorithm is employed to decrease the influence of external disturbance, and the coefficient of the slide surface is established based on the adaptive gain. In view of the belief that it is difficult to model disturbance terms, a nonlinear disturbance observer is introduced to obtain equivalent disturbance. On this basis, an adaptive control algorithm with disturbance compensation is proposed to improve the robustness of the visual servo system. We use Lyapunov’s method to analyze the stability conditions of the system. Compared with the other state-of-the-art methods, the simulation results show that our method has superior performance in convergence, accuracy, and restraining disturbance. Finally, the proposed algorithm is applied to the hoisting platform for experimental research, which proves the effectiveness of the controller.

Author(s):  
Aria Noori Asiabar ◽  
Reza Kazemi

In this paper, a direct yaw moment control algorithm is designed such that the corrective yaw moment is generated through direct control of driving and braking torques of four in-wheel brushless direct current motors located at the empty space of vehicle wheels. The proposed control system consists of a higher-level controller and a lower-level controller. In the upper level of proposed controller, a PID controller is designed to keep longitudinal velocity constant in manoeuvres. In addition, due to probable modelling error and parametric uncertainties as well as adaptation of unknown parameters in control law, an adaptive sliding mode control through adaptation of unknown parameters is presented to yield the corrective yaw moment such that the yaw rate tracks the desired value and the vehicle sideslip angle maintains limited so as to improve vehicle handling stability. The lower-level controller allocates the achieved control efforts (i.e. total longitudinal force and corrective yaw moment) to driving or regenerative braking torques of four in-wheel motors so as to generate the desired tyre longitudinal forces. The additional yaw moment applied by upper-lever controller may saturate the tyre forces. To this end, a novel longitudinal slip ratio controller which is designed based on fuzzy logic is included in the lower-level controller. A tyre dynamic weight transfer-based torque distribution algorithm is employed to distribute the motor driving torque or regenerative braking torque of each in-wheel motor for vehicle stability enhancement. A seven degree-of-freedom non-linear vehicle model with Magic Formula tyre model as well as the proposed control algorithm are simulated in Matlab/Simulink software. Three steering inputs including lane change, double lane change and step-steer manoeuvres in different roads are investigated in simulation environment. The simulation results show that the proposed control algorithm is capable of improving vehicle handling stability and maintaining vehicle yaw stability.


Author(s):  
J. Fei ◽  
C. Batur

This paper presents a new sliding mode adaptive controller for MEMS z-axis gyroscope. The proposed adaptive sliding mode control algorithm can on-line estimate the component of the angular velocity vector, which is orthogonal to the plane of oscillation of the gyroscope (the z-axis) and the linear damping and stiffness model coefficients. The stability of the closed-loop system can be guaranteed with the proposed control strategy. The numerical simulation for MEMS Gyroscope is investigated to verify the effectiveness of the proposed adaptive sliding mode control scheme. It is shown that the proposed adaptive sliding mode control scheme offers several advantages such as on-line estimation of gyroscope parameters including angular rate and large robustness to parameter variations and external disturbance.


2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Lihua Liang ◽  
Mingxiao Sun ◽  
Tiantian Luan

An adaptive sliding mode controller based on fuzzy input design is presented, in order to reduce the roll motion of surface vessel fin stabilizers with shock and vibration of waves. The nonlinearities and uncertainties of the system including feedback errors and disturbance induced by waves are analyzed. And the lift-feedback system is proposed, which improves the shortage of conventional fin angle-feedback. Then the fuzzy input-based adaptive sliding mode control is designed for the system. In the controller design, the Lyapunov function is adopted to guarantee the system stability. Finally, experimental results demonstrate the superior performance of the controller designed using fuzzy input, when compared to the PID controller used in practical engineering.


2017 ◽  
Vol 51 (6) ◽  
pp. 10-20 ◽  
Author(s):  
Ying Wu ◽  
Shengqiang Yang ◽  
Wenhui Li ◽  
Daliang Liu ◽  
Kang Hou

AbstractAn unmanned surface vehicle (USV) is a promising maritime motion platform used to accomplish hundreds of different tasks. This paper presents a design, improved dynamic modeling, and motion control of an underactuated USV, called WL-II. The detailed structure and component of WL-II are studied first. Then based on WL-II's structure, kinematic and dynamic models are built considering wind as well as sea waves; thus, a nonlinear dynamics model is deduced in the form of a state equation. The hardware and software systems of WL-II are introduced for its control mechanism. Then, the adaptive sliding mode control (SMC) algorithm for WL-II's motion is examined. The simulation and experimental results validate the superior performance of the proposed algorithm for WL-II's heading control to the regular SMC method. In this paper, improved dynamics, which consider more parameters (wind and sea waves), are proposed and reasonably simplified for computation. The adaptive SMC is used to control WL-II's motion to improve control precision and reduce response time.


Filomat ◽  
2018 ◽  
Vol 32 (5) ◽  
pp. 1789-1796
Author(s):  
Qian Gao ◽  
Naibao He ◽  
Fengxue Cao

This study focuses on a novel anti-disturbance flight control scheme for the near space hypersonic vehicle (NHV) based on the fuzzy sliding-mode control technique and disturbance observer. First, a fuzzy system is employed to approximate the uncertainty nonlinear dynamics; furthermore, an auxiliary fast dynamic observation system is introduced to tackle the system uncertainty and the time-varying unknown external disturbance of the NHV. Second, the dynamic adaptive terminal sliding-mode control strategy is raised to alleviate the chattering phenomenon. Third, the Lyapunov method is used to prove that the adaptive control system can be guaranteed to be stable and the tracking errors are converged in finite time. Finally, the effectiveness of the proposed method is verified with simulation.


Sign in / Sign up

Export Citation Format

Share Document