scholarly journals Optimized YOLOv3 Algorithm and Its Application in Traffic Flow Detections

2020 ◽  
Vol 10 (9) ◽  
pp. 3079 ◽  
Author(s):  
Yi-Qi Huang ◽  
Jia-Chun Zheng ◽  
Shi-Dan Sun ◽  
Cheng-Fu Yang ◽  
Jing Liu

In the intelligent traffic system, real-time and accurate detections of vehicles in images and video data are very important and challenging work. Especially in situations with complex scenes, different models, and high density, it is difficult to accurately locate and classify these vehicles during traffic flows. Therefore, we propose a single-stage deep neural network YOLOv3-DL, which is based on the Tensorflow framework to improve this problem. The network structure is optimized by introducing the idea of spatial pyramid pooling, then the loss function is redefined, and a weight regularization method is introduced, for that, the real-time detections and statistics of traffic flows can be implemented effectively. The optimization algorithm we use is the DL-CAR data set for end-to-end network training and experiments with data sets under different scenarios and weathers. The analyses of experimental data show that the optimized algorithm can improve the vehicles’ detection accuracy on the test set by 3.86%. Experiments on test sets in different environments have improved the detection accuracy rate by 4.53%, indicating that the algorithm has high robustness. At the same time, the detection accuracy and speed of the investigated algorithm are higher than other algorithms, indicating that the algorithm has higher detection performance.

2021 ◽  
Author(s):  
ElMehdi SAOUDI ◽  
Said Jai Andaloussi

Abstract With the rapid growth of the volume of video data and the development of multimedia technologies, it has become necessary to have the ability to accurately and quickly browse and search through information stored in large multimedia databases. For this purpose, content-based video retrieval ( CBVR ) has become an active area of research over the last decade. In this paper, We propose a content-based video retrieval system providing similar videos from a large multimedia data-set based on a query video. The approach uses vector motion-based signatures to describe the visual content and uses machine learning techniques to extract key-frames for rapid browsing and efficient video indexing. We have implemented the proposed approach on both, single machine and real-time distributed cluster to evaluate the real-time performance aspect, especially when the number and size of videos are large. Experiments are performed using various benchmark action and activity recognition data-sets and the results reveal the effectiveness of the proposed method in both accuracy and processing time compared to state-of-the-art methods.


2021 ◽  
pp. 1-11
Author(s):  
Tingting Zhao ◽  
Xiaoli Yi ◽  
Zhiyong Zeng ◽  
Tao Feng

YTNR (Yunnan Tongbiguan Nature Reserve) is located in the westernmost part of China’s tropical regions and is the only area in China with the tropical biota of the Irrawaddy River system. The reserve has abundant tropical flora and fauna resources. In order to realize the real-time detection of wild animals in this area, this paper proposes an improved YOLO (You only look once) network. The original YOLO model can achieve higher detection accuracy, but due to the complex model structure, it cannot achieve a faster detection speed on the CPU detection platform. Therefore, the lightweight network MobileNet is introduced to replace the backbone feature extraction network in YOLO, which realizes real-time detection on the CPU platform. In response to the difficulty in collecting wild animal image data, the research team deployed 50 high-definition cameras in the study area and conducted continuous observations for more than 1,000 hours. In the end, this research uses 1410 images of wildlife collected in the field and 1577 wildlife images from the internet to construct a research data set combined with the manual annotation of domain experts. At the same time, transfer learning is introduced to solve the problem of insufficient training data and the network is difficult to fit. The experimental results show that our model trained on a training set containing 2419 animal images has a mean average precision of 93.6% and an FPS (Frame Per Second) of 3.8 under the CPU. Compared with YOLO, the mean average precision is increased by 7.7%, and the FPS value is increased by 3.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Jiawei Lian ◽  
Junhong He ◽  
Yun Niu ◽  
Tianze Wang

Purpose The current popular image processing technologies based on convolutional neural network have the characteristics of large computation, high storage cost and low accuracy for tiny defect detection, which is contrary to the high real-time and accuracy, limited computing resources and storage required by industrial applications. Therefore, an improved YOLOv4 named as YOLOv4-Defect is proposed aim to solve the above problems. Design/methodology/approach On the one hand, this study performs multi-dimensional compression processing on the feature extraction network of YOLOv4 to simplify the model and improve the feature extraction ability of the model through knowledge distillation. On the other hand, a prediction scale with more detailed receptive field is added to optimize the model structure, which can improve the detection performance for tiny defects. Findings The effectiveness of the method is verified by public data sets NEU-CLS and DAGM 2007, and the steel ingot data set collected in the actual industrial field. The experimental results demonstrated that the proposed YOLOv4-Defect method can greatly improve the recognition efficiency and accuracy and reduce the size and computation consumption of the model. Originality/value This paper proposed an improved YOLOv4 named as YOLOv4-Defect for the detection of surface defect, which is conducive to application in various industrial scenarios with limited storage and computing resources, and meets the requirements of high real-time and precision.


Author(s):  
Tu Renwei ◽  
Zhu Zhongjie ◽  
Bai Yongqiang ◽  
Gao Ming ◽  
Ge Zhifeng

Unmanned Aerial Vehicle (UAV) inspection has become one of main methods for current transmission line inspection, but there are still some shortcomings such as slow detection speed, low efficiency, and inability for low light environment. To address these issues, this paper proposes a deep learning detection model based on You Only Look Once (YOLO) v3. On the one hand, the neural network structure is simplified, that is the three feature maps of YOLO v3 are pruned into two to meet specific detection requirements. Meanwhile, the K-means++ clustering method is used to calculate the anchor value of the data set to improve the detection accuracy. On the other hand, 1000 sets of power tower and insulator data sets are collected, which are inverted and scaled to expand the data set, and are fully optimized by adding different illumination and viewing angles. The experimental results show that this model using improved YOLO v3 can effectively improve the detection accuracy by 6.0%, flops by 8.4%, and the detection speed by about 6.0%.


Author(s):  
Lifang Zhou ◽  
Guang Deng ◽  
Weisheng Li ◽  
Jianxun Mi ◽  
Bangjun Lei

Current state-of-the-art detectors achieved impressive performance in detection accuracy with the use of deep learning. However, most of such detectors cannot detect objects in real time due to heavy computational cost, which limits their wide application. Although some one-stage detectors are designed to accelerate the detection speed, it is still not satisfied for task in high-resolution remote sensing images. To address this problem, a lightweight one-stage approach based on YOLOv3 is proposed in this paper, which is named Squeeze-and-Excitation YOLOv3 (SE-YOLOv3). The proposed algorithm maintains high efficiency and effectiveness simultaneously. With an aim to reduce the number of parameters and increase the ability of feature description, two customized modules, lightweight feature extraction and attention-aware feature augmentation, are embedded by utilizing global information and suppressing redundancy features, respectively. To meet the scale invariance, a spatial pyramid pooling method is used to aggregate local features. The evaluation experiments on two remote sensing image data sets, DOTA and NWPU VHR-10, reveal that the proposed approach achieves more competitive detection effect with less computational consumption.


Author(s):  
Jung Hwan Oh ◽  
Jeong Kyu Lee ◽  
Sae Hwang

Data mining, which is defined as the process of extracting previously unknown knowledge and detecting interesting patterns from a massive set of data, has been an active research area. As a result, several commercial products and research prototypes are available nowadays. However, most of these studies have focused on corporate data — typically in an alpha-numeric database, and relatively less work has been pursued for the mining of multimedia data (Zaïane, Han, & Zhu, 2000). Digital multimedia differs from previous forms of combined media in that the bits representing texts, images, audios, and videos can be treated as data by computer programs (Simoff, Djeraba, & Zaïane, 2002). One facet of these diverse data in terms of underlying models and formats is that they are synchronized and integrated hence, can be treated as integrated data records. The collection of such integral data records constitutes a multimedia data set. The challenge of extracting meaningful patterns from such data sets has lead to research and development in the area of multimedia data mining. This is a challenging field due to the non-structured nature of multimedia data. Such ubiquitous data is required in many applications such as financial, medical, advertising and Command, Control, Communications and Intelligence (C3I) (Thuraisingham, Clifton, Maurer, & Ceruti, 2001). Multimedia databases are widespread and multimedia data sets are extremely large. There are tools for managing and searching within such collections, but the need for tools to extract hidden and useful knowledge embedded within multimedia data is becoming critical for many decision-making applications.


Author(s):  
CHANGHUA YU ◽  
MICHAEL T. MANRY ◽  
JIANG LI

In the neural network literature, many preprocessing techniques, such as feature de-correlation, input unbiasing and normalization, are suggested to accelerate multilayer perceptron training. In this paper, we show that a network trained with an original data set and one trained with a linear transformation of the original data will go through the same training dynamics, as long as they start from equivalent states. Thus preprocessing techniques may not be helpful and are merely equivalent to using a different weight set to initialize the network. Theoretical analyses of such preprocessing approaches are given for conjugate gradient, back propagation and the Newton method. In addition, an efficient Newton-like training algorithm is proposed for hidden layer training. Experiments on various data sets confirm the theoretical analyses and verify the improvement of the new algorithm.


2017 ◽  
Author(s):  
Peter Berg ◽  
Chantal Donnelly ◽  
David Gustafsson

Abstract. Updating climatological forcing data to near current data are compelling for impact modelling, e.g. to update model simulations or to simulate recent extreme events. Hydrological simulations are generally sensitive to bias in the meteorological forcing data, especially relative to the data used for the calibration of the model. The lack of daily resolution data at a global scale has previously been solved by adjusting re-analysis data global gridded observations. However, existing data sets of this type have been produced for a fixed past time period, determined by the main global observational data sets. Long delays between updates of these data sets leaves a data gap between present and the end of the data set. Further, hydrological forecasts require initialisations of the current state of the snow, soil, lake (and sometimes river) storage. This is normally conceived by forcing the model with observed meteorological conditions for an extended spin-up period, typically at a daily time step, to calculate the initial state. Here, we present a method named GFD (Global Forcing Data) to combine different data sets in order to produce near real-time updated hydrological forcing data that are compatible with the products covering the climatological period. GFD resembles the already established WFDEI method (Weedon et al., 2014) closely, but uses updated climatological observations, and for the near real-time it uses interim products that apply similar methods. This allows GFD to produce updated forcing data including the previous calendar month around the 10th of each month. We present the GFD method and different produced data sets, which are evaluated against the WFDEI data set, as well as with hydrological simulations with the HYPE model over Europe and the Arctic region. We show that GFD performs similarly to WFDEI and that the updated period significantly reduces the bias of the reanalysis data, although less well for the last two months of the updating cycle. For real-time updates until the current day, extending GFD with operational meteorological forecasts, a large drift is present in the hydrological simulations due to the bias of the meteorological forecasting model.


2019 ◽  
Vol 8 (3) ◽  
pp. 6069-6076

Many computer vision applications needs to detect moving object from an input video sequences. The main applications of this are traffic monitoring, visual surveillance, people tracking and security etc. Among these, traffic monitoring is one of the most difficult tasks in real time video processing. Many algorithms are introduced to monitor traffic accurately. But most of the cases, the detection accuracy is very less and the detection time is higher which makes the algorithms are not suitable for real time applications. In this paper, a new technique to detect moving vehicle efficiently using Modified Gaussian Mixture Model and Modified Blob Detection techniques is proposed. The modified Gaussian Mixture model generates the background from overall probability of the complete data set and by calculating the required step size from the frame differences. The modified Blob Analysis is then used to classify proper moving objects. The simulation results shows that the method accurately detect the target


CONVERTER ◽  
2021 ◽  
pp. 598-605
Author(s):  
Zhao Jianchao

Behind the rapid development of the Internet industry, Internet security has become a hidden danger. In recent years, the outstanding performance of deep learning in classification and behavior prediction based on massive data makes people begin to study how to use deep learning technology. Therefore, this paper attempts to apply deep learning to intrusion detection to learn and classify network attacks. Aiming at the nsl-kdd data set, this paper first uses the traditional classification methods and several different deep learning algorithms for learning classification. This paper deeply analyzes the correlation among data sets, algorithm characteristics and experimental classification results, and finds out the deep learning algorithm which is relatively good at. Then, a normalized coding algorithm is proposed. The experimental results show that the algorithm can improve the detection accuracy and reduce the false alarm rate.


Sign in / Sign up

Export Citation Format

Share Document