scholarly journals Performance Evaluation of Enhanced Bioretention Systems in Removing Dissolved Nutrients in Stormwater Runoff

2020 ◽  
Vol 10 (9) ◽  
pp. 3148 ◽  
Author(s):  
Hui Luo ◽  
Lin Guan ◽  
Zhaoqian Jing ◽  
BaoJie He ◽  
Xinyue Cao ◽  
...  

Bioretention has great potential in managing and purifying urban stormwater runoff. However, information regarding the removal of nutrients in bioretention systems with the use of media, plants, and saturated areas is still limited. In this study, three devices of control, conventional bioretention (DS), and strengthened bioretention (SZ) were investigated to enhance the simultaneous removal of nitrogen and phosphorus. The experimental column SZ showed the best performance for total phosphorus (TP), ammonia (NH4+-N) and total nitrogen (TN) removal (85.6–92.4%, 83.1–92.7%, 57.1–74.1%, respectively), whereas DS columns performed poorly for NH4+-N removal (43.6–81.2%) under different conditions. For the removal of nitrate, the columns of Control and DS exhibited negative performance (−14.3% and −8.2%) in a typical event. Further evaluation of water quality revealed that in the early stages of rainfall, the effluent of the SZ column was able to reach quality standards of Grade IV for surface water in China. Moreover, although the ion-exchange and phosphate precipitation occurred on the surface of the media, which were placed in the saturation zone, it did not change the surface crystal structure.

Author(s):  
Darren Drapper ◽  
Andy Hornbuckle

Urban stormwater runoff from a medium-density residential development in southeast Queensland has been monitored in the field since November 2013. A treatment train installed on the site includes rainwater tanks collecting roofwater, 200-micron mesh baskets installed in grated gully pits and two 850 mm high media filtration cartridges installed in an underground 4 m3 vault. A monitoring protocol developed by research partners, Queensland University of Technology (QUT), guided the monitoring process over a 4.5-year period. Heavy metals were included in the list of analytes during the monitoring period as the catchment is within 1 km of the environmentally-sensitive Moreton Bay, Queensland. Removal efficiencies observed at this site for the regulated pollutants; total suspended solids (TSS), total phosphorus (TP) and total nitrogen (TN) for the pit baskets were 61%, 28% and 45% respectively. The cartridge filters removed 78% TSS, 59% TP, 42% TN, 40% total copper and 51% total zinc. As the measured influent concentrations to the cartridge filters were low when compared to industry guidelines, the dataset was merged with international field results for TSS (n=39) and TP (n=32) but truncated within anticipated guideline levels. The combined dataset for the media filter demonstrates performance at 89% TSS, 66% TP and 42% TN. The total gross pollutant generation rate from the medium-density residential catchment was observed to be 0.24 m3/Ha/year, with a corresponding air-dried mass of 142.5 kg/Ha/year. Less than 2% of the gross pollutant mass was anthropogenic. The findings of this research suggest that the treatment train, and in particular the media filter, holds promise for the removal of total copper and total zinc, in addition to TSS, TP and TN, from urban stormwater runoff. Based on a maximum, low risk trigger TN concentration of 1.5 mg/L, the field test data from 4.5 years of operation and standard maintenance, suggests a 5.5-year replacement interval for the media filters.


Water ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 1307 ◽  
Author(s):  
Darren Drapper ◽  
Andy Hornbuckle

Urban stormwater runoff from a medium-density residential development in southeast Queensland has been monitored in the field since November 2013. A treatment train installed on the site includes rainwater tanks collecting roofwater, 200-micron mesh baskets installed in grated gully pits, and two 850-mm-high media filtration cartridges installed in an underground 4-m3 vault. The site has been monitored over a 4.5-year period. Removal efficiencies were observed at this site for the regulated pollutants; the corresponding values for total suspended solids (TSS), total phosphorus (TP), and total nitrogen (TN) for the pit baskets were 61%, 28%, and 45%, respectively. The cartridge filters removed 78% of TSS, 59% of TP, 42% of TN, 40% of total copper, and 51% of total zinc. As the measured influent TSS and TP concentrations to the cartridge filters were low when compared to industry guidelines, the U.S. field dataset was truncated to anticipated guideline levels, confirming results at 90% for TSS and 76% for TP. The total gross pollutant generation rate from the medium-density residential catchment was observed to be 0.24 m3/Ha/year, with a corresponding air-dried mass of 142.5 kg/Ha/year. Less than 2% of the gross pollutant mass was anthropogenic. This paper concludes that the treatment train, and in particular the media filter, provides good removal of total copper and total zinc as well as TSS, TP, and TN from urban stormwater runoff, with higher inlet concentrations producing better performance. Field test data from 58 months of operation and standard maintenance suggests that breakthrough of TSS and TP has not occurred yet.


HortScience ◽  
2014 ◽  
Vol 49 (5) ◽  
pp. 645-652 ◽  
Author(s):  
Rebecca L. Turk ◽  
Helen T. Kraus ◽  
Ted E. Bilderback ◽  
William F. Hunt ◽  
William C. Fonteno

Twelve rain gardens were constructed to analyze the effectiveness of three different filter bed substrates to support plant growth and remove nutrients from urban stormwater runoff. The filter bed substrates included a sand-based substrate (sand) composed of (v/v/v) of 80% washed sand, 15% clay and silt fines, and 5% pine bark; a soil-based substrate (soil) composed of (v/v) 50% sandy loam soil and 50% pine bark; and a slate-based substrate (slate) composed of (v/v) 80% expanded slate and 20% pine bark. Coarse particles (6.3 to 2.0 mm) in the soil-based substrate created a large-pore network that conducted stormwater more quickly into and through the rain garden than slate or sand as evidenced by the high infiltration and saturated hydraulic conductivity values. Sand had good overall retention of pollutants except nitrogen (N) possibly as a result of the very small percentage (5%) of organic matter and low cation exchange capacity (CEC). Soil had the lowest remediation of phosphorus (P) and highest concentration of P in its effluent and was similar in N removal efficiency to slate. Slate had the best retention of N and P. Overall, all three substrates functioned in reducing the quantity of pollutants in urban stormwater runoff; yet, the impact of substrate on remediation appeared to lessen by Season 2 because there were few differences between substrate in the effluent nutrient concentration. Substrate did not affect shoot or root growth. Eleven of the 16 species (B. nigra, B. ‘Duraheat’, M. virginiana, M. ‘Sweet Thing’, I. virginica, I. ‘Henry’s Garnet’, J. effusus, P. ‘Shenandoah’, H. angustifolius, H. ‘First Light’, and E. purpureum subsp. maculatum) grew well in the rain gardens and could be used as rain garden plants.


Water ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1312
Author(s):  
Daniel Wicke ◽  
Andreas Matzinger ◽  
Hauke Sonnenberg ◽  
Nicolas Caradot ◽  
Rabea-Luisa Schubert ◽  
...  

The main aim of this study was a survey of micropollutants in stormwater runoff of Berlin (Germany) and its dependence on land-use types. In a one-year monitoring program, event mean concentrations were measured for a set of 106 parameters, including 85 organic micropollutants (e.g., flame retardants, phthalates, pesticides/biocides, polycyclic aromatic hydrocarbons (PAH)), heavy metals and standard parameters. Monitoring points were selected in five catchments of different urban land-use types, and at one urban river. We detected 77 of the 106 parameters at least once in stormwater runoff of the investigated catchment types. On average, stormwater runoff contained a mix of 24 µg L−1 organic micropollutants and 1.3 mg L−1 heavy metals. For organic micropollutants, concentrations were highest in all catchments for the plasticizer diisodecyl phthalate. Concentrations of all but five parameters showed significant differences among the five land-use types. While major roads were the dominant source of traffic-related substances such as PAH, each of the other land-use types showed the highest concentrations for some substances (e.g., flame retardants in commercial area, pesticides in catchment dominated by one family homes). Comparison with environmental quality standards (EQS) for surface waters shows that 13 micropollutants in stormwater runoff and 8 micropollutants in the receiving river exceeded German quality standards for receiving surface waters during storm events, highlighting the relevance of stormwater inputs for urban surface waters.


2015 ◽  
Vol 40 (3) ◽  
pp. 480-492 ◽  
Author(s):  
Geoff J. Vietz ◽  
Christopher J. Walsh ◽  
Tim D. Fletcher

The urban stream syndrome is an almost universal physical and ecological response of streams to catchment urbanization. Altered channel geomorphology is a primary symptom that includes channel deepening, widening and instability. While the common approach is to treat the symptoms (e.g. modifying and stabilizing the channel), many stream restoration objectives will not be achieved unless the more vexing problem, treating the cause, is addressed in some way. Research demonstrates that the dominant cause of geomorphic change in streams in urban catchments is an altered flow regime and increase in the volume of stormwater runoff. Thus, managers can choose to treat the symptoms by modifying and controlling the channel to accommodate the altered flow regime, or treat the cause by modifying the flow regime to reduce the impact on channel morphology. In both cases treatments must, at the least, explicitly consider hydrogeomorphology—the science of the linkages between various hydrologic and geomorphic processes—to have a chance of success. This paper provides a review of recent literature (2010 to early 2015) to discuss fluvial hydrogeomorphology in the management of streams subject to urbanization. We suggest that while the dominant approach is focused on combating the symptoms of catchment urbanization (that we refer to as channel reconfiguration), there is increasing interest in approaches that attempt to address the causes by using stormwater control measures at a range of scales in the catchment (e.g. flow-regime management). In many settings in the oft-constrained urban catchment, effective management of stream morphology may require multiple approaches. To conclude, we identify five research areas that could inform urban hydrogeomorphology, one of the most challenging of which is the extent to which the volume of excess urban stormwater runoff can be reduced to mitigate the impact on stream geomorphology.


2013 ◽  
Vol 726-731 ◽  
pp. 1801-1804 ◽  
Author(s):  
Shu Min Wang ◽  
Hui Yu

In order to know the characteristic of spatial and temporal distribution of heavy metal concentrations in urban stormwater runoff, rainfall runoff from impervious underlying surfaces in urban region was observed during rain events. Results showed that during the precipitation process, heavy metal concentrations decreased gradually temporally (except Cd); concentrations of Fe, Cu and Zn meet Class III standard of Environmental Quality Standards for Surface Water in terminal runoff, but concentrations of Cd and Pb go beyond this standard far. Heavy metal concentrations in runoff from different types of landuses were significantly different. The arithmetic average concentrations of Fe, Cd, Cu and Zn in stormwater runoff from roof (e.g.,34.4mg/L, 0.15mg/L, 1.25mg/L and 1.23mg/L, respectively) were obviously higher than that in stormwater runoff from road (e.g., 11.8mg/L, 0.05mg/L, 0.13mg/L and 0.69mg/L, respectively).


Author(s):  
Patricia Kremer

Specific rations for the zooxanthellae-bearing medusa, Linuche unguiculata, were calculated using two approaches: (a) gut contents of field collected medusae combined with experimental measurements of digestion time; and (b) experimental feeding studies combined with estimates of ambient prey biomass. Estimates of specific daily ration from gut contents averaged 5% for carbon, 6% for nitrogen, and 4% for phosphorus for the dominant size of medusae. Of the 868 medusae examined, 86% contained recognizable prey with an average of 3.6 items per medusa. Copepods dominated the gut contents (51%) as well as the ambient zooplankton prey (82%), but there was an over-representation of shelled prey, larval molluscs and foraminifera, in the gut (33%) compared with their availability (4%). Digestion times for crustaceans ranged from 1—4 h with longer times for larger prey. Ambient prey concentrations in areas of abundant L. unguiculata ranged from 0.2—4.0 prey l-1, with an average of 1.7 and no measurable day—night differences. There were also no measurable day—night differences in ingestion rates for field or laboratory fed medusae. Feeding studies showed a linear relationship between ingestion and prey concentration up to 400 prey l-1. Rations determined from experimental feeding studies were higher but less than double the ration estimates based on field gut contents. Specific ration decreased with increased medusa size in both field and laboratory results. Heterotrophy was calculated to be a major source of both nitrogen and phosphorus, but only a minor source of carbon. Elemental budgets for carbon, nitrogen and phosphorus were calculated using measured inputs of photosynthesis, ingestion, and dissolved nutrients and measured outputs of respiration, excretion, reproduction and tissue growth. Total measured outputs balanced the inputs, within the uncertainty associated with egg production.


Sign in / Sign up

Export Citation Format

Share Document