scholarly journals Digital Twin for Variation Management: A General Framework and Identification of Industrial Challenges Related to the Implementation

2020 ◽  
Vol 10 (10) ◽  
pp. 3342 ◽  
Author(s):  
Kristina Wärmefjord ◽  
Rikard Söderberg ◽  
Benjamin Schleich ◽  
Hua Wang

Digital twins have gained a lot of interest in recent years. This paper presents a survey among researchers and engineers with expertise in variation management confirming the interest of digital twins in this area. The survey shows, however, a gap between future research interest in academia and industry, identifying a larger need in industry. This indicates that there are some barriers in the industry to overcome before the benefits of a digital twin for variation management and geometry assurance can be fully capitalized on in an industrial context. To identify those barriers and challenges, an extensive interview study with engineers from eight different companies in the manufacturing sectors was accomplished. The analysis identifies industrial challenges in the areas of system-level, simulation working process, management issues, and education. One of the main challenges is to keep the 3D models fully updated, including keeping track of changes during the product development process and also feedback changes during full production to the development engineers. This is a part of what is called the digital thread, which is also addressed in this paper.

Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4919
Author(s):  
Monika Kosacka-Olejnik ◽  
Mariusz Kostrzewski ◽  
Magdalena Marczewska ◽  
Bogna Mrówczyńska ◽  
Paweł Pawlewski

In the Industry 4.0 era, the Digital Twin has become one of the most promising enabling technologies supporting material flow. Although the literature on the Digital Twin is becoming relatively well explored, including a certain number of review papers, the context of the Digital Twins application in internal transport systems has not been investigated so far. This paper thoroughly reviews the research on the Digital Twins applied in internal transport systems concerning major research trends within this research area and identification of future research directions. It provides clarification of various definitions related to the Digital Twin concept, including misconceptions such as a digital shadow, a digital model, and a digital mirror. Additionally, the relationships between terms such as material handling, material flow, and intralogistics in the context of internal transport systems coupled with the Digital Twin are explained. This paper’s contribution to the current state of the art of the Digital Twins is three-fold: (1) recognition of the most influential and high-impact journals, papers, and researchers; (2) identification of the major research trends related to the Digital Twins applications in internal transport systems, and (3) presentation of future research agendas in investigating Digital Twins applied for internal transport systems.


Author(s):  
Marcos Esterman ◽  
Kosuke Ishii

Abstract This paper develops the fundamental requirements, definitions and metrics that will serve as a foundation for a method to aid in concurrent product development (CPD) across the supply chain. A case study at HP validated nine sources of CPD uncertainty and identified four new important ideas that led to five key requirements for CPD across the supply chain. The concepts of degree of design customization and degree of coupling are introduced as a framework by which to evaluate the risk introduced into the product development process by suppliers. The engineering metric supplier coupling, the engineering metric deviation from target and the degree of design customization indices are defined and integrated into a process to facilitate risk assessment from the integrator’s perspective both at the system-level and supplier-level. The paper concludes by presenting the future research agenda.


2021 ◽  
Vol 11 (9) ◽  
pp. 3750
Author(s):  
Shaun West ◽  
Oliver Stoll ◽  
Jürg Meierhofer ◽  
Simon Züst

The application of digital twins provides value creation within the fields of operations and service management; existing research around decision-making and value co-creation is limited at this point. Prior studies have provided insights into the benefits of digital twins that combined both data and simulation approaches; however, there remains a managerial gap. The purpose of this paper is to explore this research gap using input from a multiple case study research design from both manufacturing environments and non-manufacturing environments. The authors use ten cases to explore how digital twins support value co-creation through decision-making. The authors were all involved in the development of the ten cases. Individual biases were removed by using the literature to provide the assessment dimensions and allowing a convergence of the results. Drawing on the lessons from the ten cases, this study empirically identified eight managerial issues that need to be considered when developing digital twins to support multi-stakeholder decision-making that leads to value co-creation. The application of digital twins in value co-creation and decision-making is a topic that has developed from practice and is an area where a research gap exists between theory and practice. A cross-case analysis was developed based on the literature and the ten cases (eight industrial and two pilot-scale cases) providing the empirical findings. The findings describe how firms can design, develop, and commercialize digital-twin-enabled value propositions and will initiate future research.


Vestnik IGEU ◽  
2020 ◽  
pp. 32-43
Author(s):  
A.I. Tikhonov ◽  
A.V. Stulov ◽  
I.S. Snitko ◽  
A.V. Podobnyj

The development of generative design technologies that solve the problems of structural optimization and digital twins, that is simulation models of devices with at least 95 % accuracy, is an urgent task. These tech-nologies are usually implemented on the basis of 3D models of physical fields, for example, using ANSYS Maxwell or COMSOL Multiphysics packages, which are demanding in terms of computer resources and de-signer skills. However, the sufficient accuracy for transformer digital twins can be achieved using chain and 2D field models. The article aims to develop the models to calculate the transformer with the accuracy and ability to take into account the design features of a particular device, which is characteristic of digital twins. This can be used in generative design of transformers and in the study of their operation modes. The finite element method implemented via the authoring EMLib library which allows calculating magnetic fields in a 2D formulation was used. The simulation methods using the MatLab Simulink SymPowerSystem package were also employed. The assumptions made during the power transformer simulation have been estimated. They include the possibility of using chain and 2D field models without taking into account the steel anisotropy with Dirichlet boundary conditions when calculating the scattering fluxes. 2D field models have been developed for calculating the main flux and scattering fluxes, which are able to form the basis for digital twin technology and generative design of transformers. A simulation model of a transformer implemented in MatLab Simulink has been provided. The possibility of using the models for diagnosing transformer faults has been demonstrated. The simulation results of a transformer with a defect have been presented. The results obtained can be used in the development of transformers to search for optimal designs and to study the results of design decisions without creating prototypes. The findings can also be applied while operating the transformers to assess the damage and failures without dismantling and according to the test results.


Electronics ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 644
Author(s):  
Michal Frivaldsky ◽  
Jan Morgos ◽  
Michal Prazenica ◽  
Kristian Takacs

In this paper, we describe a procedure for designing an accurate simulation model using a price-wised linear approach referred to as the power semiconductor converters of a DC microgrid concept. Initially, the selection of topologies of individual power stage blocs are identified. Due to the requirements for verifying the accuracy of the simulation model, physical samples of power converters are realized with a power ratio of 1:10. The focus was on optimization of operational parameters such as real-time behavior (variable waveforms within a time domain), efficiency, and the voltage/current ripples. The approach was compared to real-time operation and efficiency performance was evaluated showing the accuracy and suitability of the presented approach. The results show the potential for developing complex smart grid simulation models, with a high level of accuracy, and thus the possibility to investigate various operational scenarios and the impact of power converter characteristics on the performance of a smart gird. Two possible operational scenarios of the proposed smart grid concept are evaluated and demonstrate that an accurate hardware-in-the-loop (HIL) system can be designed.


2021 ◽  
Vol 1 ◽  
pp. 531-540
Author(s):  
Albert Albers ◽  
Miriam Wilmsen ◽  
Kilian Gericke

AbstractThe implementation of agile frameworks, such as SAFe, in large companies causes conflicts between the overall product development process with a rigid linkage to the calendar cycles and the continuous agile project planning. To resolve these conflicts, adaptive processes can be used to support the creation of realistic target-processes, i.e. project plans, while stabilizing process quality and simplifying process management. This enables the usage of standardisation methods and module sets for design processes.The objective of this contribution is to support project managers to create realistic target-processes through the usage of target-process module sets. These target-process module sets also aim to stabilize process quality and to simplify process management. This contribution provides an approach for the development and application of target-process module sets, in accordance to previously gathered requirements and evaluates the approach within a case study with project managers at AUDI AG (N=21) and an interview study with process authors (N=4) from three different companies.


2021 ◽  
Vol 18 (4) ◽  
pp. 1-27
Author(s):  
Yasir Mahmood Qureshi ◽  
William Andrew Simon ◽  
Marina Zapater ◽  
Katzalin Olcoz ◽  
David Atienza

The increasing adoption of smart systems in our daily life has led to the development of new applications with varying performance and energy constraints, and suitable computing architectures need to be developed for these new applications. In this article, we present gem5-X, a system-level simulation framework, based on gem-5, for architectural exploration of heterogeneous many-core systems. To demonstrate the capabilities of gem5-X, real-time video analytics is used as a case-study. It is composed of two kernels, namely, video encoding and image classification using convolutional neural networks (CNNs). First, we explore through gem5-X the benefits of latest 3D high bandwidth memory (HBM2) in different architectural configurations. Then, using a two-step exploration methodology, we develop a new optimized clustered-heterogeneous architecture with HBM2 in gem5-X for video analytics application. In this proposed clustered-heterogeneous architecture, ARMv8 in-order cluster with in-cache computing engine executes the video encoding kernel, giving 20% performance and 54% energy benefits compared to baseline ARM in-order and Out-of-Order systems, respectively. Furthermore, thanks to gem5-X, we conclude that ARM Out-of-Order clusters with HBM2 are the best choice to run visual recognition using CNNs, as they outperform DDR4-based system by up to 30% both in terms of performance and energy savings.


Sign in / Sign up

Export Citation Format

Share Document