scholarly journals Compositional Modeling to Analyze the Effect of CH4 on Coupled Carbon Storage and Enhanced Oil Recovery Process

2020 ◽  
Vol 10 (12) ◽  
pp. 4272 ◽  
Author(s):  
Jinhyung Cho ◽  
Gayoung Park ◽  
Seoyoon Kwon ◽  
Kun Lee ◽  
Hye Lee ◽  
...  

The present study is aimed at the development of compositional simulation models of the co-injection of CO2 and CH4 during the water-alternating-gas (WAG) process in order to assess the efficiency of carbon capture and storage in combination with enhanced oil recovery (CCS-EOR). The co-injection of CO2 and CH4 occupies more reservoir pore volume and causes higher reservoir pressure than CO2 WAG, thus leading to an enhanced early EOR performance. However, the overall EOR performance of the co-injection method becomes lower than that of CO2 WAG due to the reduced miscibility and sweep efficiency upon further CH4 addition. The decrease in gas displacement and sweep efficiency weaken the hysteresis effects upon the residual trapping mechanism. However, the solubility trapping mechanism takes effect because the co-injection generates higher average reservoir pressure than does the CO2 WAG. The index of global warming potential (GWP) in a mole unit is employed to quantify the carbon storage effects of CO2 and co-injection WAG cases. According to the index, 1 mole of CH4 sequestration has the same effects as that of 10 moles of CO2 for global warming mitigation. In conclusion, the carbon storage effects are enhanced as CH4 concentration in the WAG increases.

2011 ◽  
Vol 488-489 ◽  
pp. 779-782
Author(s):  
Amir Chahardehi

A recent trend in the development of CO2 pipelines is the shift from the predominance of transport of CO2 for enhanced oil recovery (EOR) to the transportation of CO2 as part of the carbon capture and storage (CSS) process for global warming mitigation. Among the processes of capture, transport, and storage, less attention has been paid to transport as it is assumed to be for granted, existing technology. This paper presents a focused analysis of the problem of structural integrity of CO2 pipelines through reviewing the state-of-the-art literature and practice, and highlights the need for a unified code of practice for the modelling of integrity and, due to the potentially hazardous nature of CO2, safety, in these pipelines.


2021 ◽  
Vol 11 (17) ◽  
pp. 7907
Author(s):  
Hye-Seung Lee ◽  
Jinhyung Cho ◽  
Young-Woo Lee ◽  
Kun-Sang Lee

Injecting CO2, a greenhouse gas, into the reservoir could be beneficial economically, by extracting remaining oil, and environmentally, by storing CO2 in the reservoir. CO2 captured from various sources always contains various impurities that affect the gas–oil system in the reservoir, changing oil productivity and CO2 geological storage performance. Therefore, it is necessary to examine the effect of impurities on both enhanced oil recovery (EOR) and carbon capture and storage (CCS) performance. For Canada Weyburn W3 fluid, a 2D compositional simulation of water-alternating-gas (WAG) injection was conducted to analyze the effect of impure CO2 on EOR and CCS performance. Most components in the CO2 stream such as CH4, H2, N2, O2, and Ar can unfavorably increase the MMP between the oil and gas mixture, while H2S decreased the MMP. MMP changed according to the type and concentration of impurity in the CO2 stream. Impurities in the CO2 stream also decreased both sweep efficiency and displacement efficiency, increased the IFT between gas and reservoir fluid, and hindered oil density reduction. The viscous gravity number increased by 59.6%, resulting in a decrease in vertical sweep efficiency. In the case of carbon storage, impurities decreased the performance of residual trapping by 4.1% and solubility trapping by 5.6% compared with pure CO2 WAG. As a result, impurities in CO2 reduced oil recovery by 9.2% and total CCS performance by 4.3%.


2019 ◽  
Vol 38 (4) ◽  
pp. 733-750
Author(s):  
Sébastien Chailleux

Analyzing the case of France, this article aims to explain how the development of enhanced oil recovery techniques over the last decade contributed to politicizing the subsurface, that is putting underground resources at the center of social unrest and political debates. France faced a decline of its oil and gas activity in the 1990s, followed by a renewal with subsurface activity in the late 2000s using enhanced oil recovery techniques. An industrial demonstrator for carbon capture and storage was developed between 2010 and 2013 , while projects targeting unconventional oil and gas were pushed forward between 2008 and 2011 before eventually being canceled. We analyze how the credibility, legitimacy, and governance of those techniques were developed and how conflicts made the role of the subsurface for energy transition the target of political choices. The level of political and industrial support and social protest played a key role in building project legitimacy, while the types of narratives and their credibility determined the distinct trajectories of hydraulic fracturing and carbon capture and storage in France. The conflicts over enhanced oil recovery techniques are also explained through the critical assessment of the governance framework that tends to exclude civil society stakeholders. We suggest that these conflicts illustrated a new type of politicization of the subsurface by merging geostrategic concerns with social claims about governance, ecological demands about pollution, and linking local preoccupations to global climate change.


2019 ◽  
Author(s):  
Yazan Ghassan Mheibesh ◽  
Michael Fraim ◽  
Abdullah S Sultan ◽  
Fahad Hassan Al Shehri

Sign in / Sign up

Export Citation Format

Share Document